Preview

Concentration polarization and ionic conductivity of nanocomposite thermoelectric materials K0.01Cu1.94S, K0.02Cu1.94S, K0.03Cu1.94S

https://doi.org/10.32523/ejpfm.2024080105

Abstract

The paper presents experimental results of concentration polarization and ionic conductivity of nanocomposite thermoelectric materials K0.01Cu1.94S, K0.02Cu1.94S , K0.03Cu1.94S . According to X-ray phase
analysis, the synthesized samples are monoclinic jarleite Cu1.93÷1.97S with an admixture of oxygen oxide Cu2S and monoclinic chalcocyte. High values of total ionic conductivity are observed, ranging from 0.86 to 1.5 Cm/cm. The lowest ionic conductivity (0.86 Cm/cm at 355 ◦ C) is observed for alloy K0.02Cu1.94S . In addition, it was found that with an increase in the concentration of potassium in the studied materials, ionic conductivity tends to decrease, activation energy increases, but the characteristics of ion transport remain high, corresponding to superionic materials.

About the Authors

M.M. Kubenova
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



M.Kh. Balapanov
Ufa University of Science and Technology
Russian Federation

Ufa



K.A. Kuterbekov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



B. Akhmetgaliev
Ufa University of Science and Technology
Russian Federation

Ufa



R.Kh. Ishembetov
Ufa University of Science and Technology
Russian Federation

Ufa



R.F. Almukhametov
Ufa University of Science and Technology
Russian Federation

Ufa



M. Zeleev
Bashkir State Medical University
Russian Federation

Ufa



A.M. Kabyshev
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



K.Zh. Bekmyrza
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



R. Alina
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



R.E. Kondakirov
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



M.K. Kenzhebek
L.N. Gumilyov Eurasian National University
Kazakhstan

Astana



References

1. Olga Caballero-Calero, José R. Ares, and Marisol Martín-González, Advanced Sustainable Systems 5(11) (2021) 2100095.

2. F.F. Jaldurgam, Z. Ahmad, F. Touati, Nanomaterials 11(4) (2021) 895.

3. M.M. Kubenova et al., Nanomaterials 11(9) (2021) 2238.

4. M.Kh. Balapanov et al., Bulletin of the Russian Academy of Sciences. Physics (2005) 69(4) 545-548. (In Russian)

5. M.Kh. Balapanov et al., Bulletin of the Bashkir University 26(4) (2021) 961-964. (In Russian)

6. H. Liu et al., Nature Materials 11 (2012) 422–425.

7. Wan-Ting Yen, Kuang-Kuo Wang and Hsin-Jay Wu, Materials Today Physics (2023).

8. S.M. Sakhabayeva et al., Recent Contibutions to Physics 4(79) (2021) 72–81.

9. K.A. Kuterbekov et al., Ionics 28 (2022) 4311-4319.

10. M.M. Kubenova et al., Eurasian Journal of Physics and Functional Materials 7(3) (2023) 197–206.


Review

For citations:


Kubenova M., Balapanov M., Kuterbekov K., Akhmetgaliev B., Ishembetov R., Almukhametov R., Zeleev M., Kabyshev A., Bekmyrza K., Alina R., Kondakirov R., Kenzhebek M. Concentration polarization and ionic conductivity of nanocomposite thermoelectric materials K0.01Cu1.94S, K0.02Cu1.94S, K0.03Cu1.94S. Eurasian Journal of Physics and Functional Materials. 2024;8(1):45-51. https://doi.org/10.32523/ejpfm.2024080105

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)