Preview

Determination of phase boundaries and diffusion coefficients of copper in spinel CuCr2Se4 and delafossite CuCrSe2 by galvanostatic intermittent titration technique (GITT)

https://doi.org/10.32523/ejpfm.2024080102

Abstract

CuxCrSe2 materials can exist in the form of delafossite with a layered structure and exhibit multiferroic properties, or in the form of spinel and exhibit ferromagnetic properties, depending on the copper concentration. The stability of both forms of CuxCrSe2 has been studied with regards to defectivity in the copper sublattice. The boundaries of the CuxCrSe2 homogeneity regions for the delafossitelike structure and for the cubic spinel CuCr2Se4 were determined by coulometric titration at room temperature. Analysis of the time dependence of cell polarization allowed us to estimate the diffusion coefficients in these materials.

About the Authors

A. O. Onishenko
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg



E. A. Suslov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg



M. S. Postnikov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg



A. S. Shkvarin
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg



A. N. Titov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg



A. I. Merentsov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Yekaterinburg,



References

1. M. Fiebig et al., Nat. Rev. Mater. 1 (2016) 16046.

2. T. Zhong et al., Natl. Sci. Rev. 7 (2020) 373–380.

3. S.N. Achary et al., Functional Materials (2012) 155–191.

4. K. Roy et al., Nat. Nanotechnol. 8 (2013) 826–830.

5. V. Fedkin et al., Ceram. Int. 49 (2023) 28089–28097.

6. A. Kotelnikova et al., RSC Adv. 12 (2022) 35722–35729.

7. A. Gagor, D. Gnida, A. Pietraszko, Mater. Chem. Phys. 146 (2014) 283–288.

8. G.C. Tewari et al., Mater. Chem. Phys. 145 (2014) 156–161.

9. R. Yano, T. Sasagawa, Cryst. Growth Des. 16 (2016) 5618–5623.

10. J.-P. Doumerc et al., Mater. Res. Bull. 21 (1986) 745–752.

11. I. Okonska-Kozlowska et al., Acta Cryst. C 49 (1993) 1448–1449.

12. H. Lu et al., Crystals 12 (2022) 433.

13. C.M. Fang et al., J. Phys. Condens. Matter. 9 (1997) 10173–10184.

14. A.-L. Hansen et al., J. Mater. Chem. C. 5 (2017) 9331–9338.

15. C.F. van Bruggen et al., Phys. B+C. 99 (1980) 166–172.

16. X. Song et al., Chem. Mater. 33 (2021) 8070–8078.

17. J. Molenda, Solid State Ionics 176 (2005) 1687–1694.

18. E.A. Suslov et al., J. Phys. Chem. A. 125 (2021) 1981–1986.

19. M. Matlak et al., Phys. Rev. B. 63 (2001) 052101.

20. M.S. Postnikov et al., Mater. Lett. 353 (2023) 135222.

21. W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124 (1977) 1569–1578.

22. Y. Zhu, C. Wang, J. Phys. Chem. C. 114 (2010) 2830–2841.

23. Z. Shen et al., J. Electrochem. Soc. 160 (2013) A1842–A1846.

24. I.M. Sokolov, Sov. Phys. Uspekhi. 29 (1986) 924–945.

25. C.A. Schneider et al., Nat. Methods 9 (2012) 671–675.

26. B.H. Toby, R.B. Von Dreele, J. Appl. Cryst. 46 (2013) 544–549.

27. E.A. Suslov et al., Ionics 22 (2016) 503–514.


Review

For citations:


Onishenko A.O., Suslov E.A., Postnikov M.S., Shkvarin A.S., Titov A.N., Merentsov A.I. Determination of phase boundaries and diffusion coefficients of copper in spinel CuCr2Se4 and delafossite CuCrSe2 by galvanostatic intermittent titration technique (GITT). Eurasian Journal of Physics and Functional Materials. 2024;8(1):14-22. https://doi.org/10.32523/ejpfm.2024080102

Views: 195


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2522-9869 (Print)
ISSN 2616-8537 (Online)