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To obtain the interactions which cause neutrino flavor conversion, we introduce a horizontal symme-
try into the standard model (SM) and propose the hypothesis that new interactions generated by the
horizontal symmetry lead to neutrino flavor conversion and oscillation. To support our hypothesis, we
evaluate the flavor conversion probability by new interactions by utilizing the definition of cross sec-
tion, and the prediction is consistent to experimental data. From our hypothesis, neutrino oscillation is
fluctuation of flavor distribution before arriving at equilibrium.
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Introduction

The phase evolution can depict phenomenologically neutrino oscillation [1]

very well, and also manifest neutrinos massive. But the interactions which

cause neutrino flavor conversion remain puzzling [2,3], which we will attempt to

investigate in this paper.

No interactions implied in the SM can induce neutrino flavor conversion,

while a horizontal symmetry added into SM will provide these interactions [4]

and also the masses of neutrinos [5]. Therefore we extend the SM and propose

a hypothesis that new interactions from horizontal symmetry lead to neutrino

flavor conversions. And neutrino oscillation is the macro phenomenon of the
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sum of all interactions before equilibrium, which will results in a mixing matrix

of anarchy [6,7].

To support our hypothesis, we will calculate the flavor conversion probability

by new interactions and compare it to the experimental data. In these calculation,

we will assume neutrinos collide due to ’Brown movement’ with their moments

of all possible directions. We will uncover that it is their mass differences that

lead to three different neutrino mixing angles.

This paper will be constructed as follows. We will introduce the model of

SU(2)L ⊗ U(1)Y ⊗ SU(2)N , which is an extension of SM by adding a horizontal

symmetry SU(2)N . We will evaluate the flavor conversion probability induced

by new interactions and compare it with experimental data. We will demonstrate

the resultant phenomenon of neutrino oscillation.

The model of SU(2)L ⊗ U(1)Y ⊗ SU(2)N

For simplicity, we will take two-flavor frame. Thus, our model contains four

leptons ve, e, vµ, µ and four quarks with neglecting the color degree of freedom.

(For anomaly free, quark sector is assigned the same as SM and we will not

discuss them. And we will not discuss the source of neutrino mass in this paper

either.)

The total group is SU(2)L ⊗ U(1)Y ⊗ SU(2)N . Considering suppression of

e ↔ µ in experiments, the horizontal flavor symmetry SU(2)N only works

between neutrinos. Thus the up sectors of SM doublets are under the horizontal

symmetry SU(2)N , while the lower sectors are not. We will assign the scale

which breaking SU(2)N just a little higher than the scale of SM. After SU(2)N

broken, the model should return to SM.

For 2 × 2 representation of field like ψ ,the transformation under the group

SU(2)L ⊗ U(1)Y ⊗ SU(2)N can be equivalent to transformation under group

SU(2)L , U(1)Y and SU(2)N in the meantime. (1) is the transformations of ψ

under group SU(2)L , U(1)Y and SU(2)N respectively:

ψ → e
−i

1
2 αa(x)τa

w ψ

ψ → e
−i

1
2 β(x)Ŷψ

ψ → ψe
i

1
2 ρb(x)τb

F (1)

In (1), τw, τF are generators associated with SU(2)L and SU(2)N respectively, Ŷ

is the weak hypercharge operator related to U(1)Y . The covariant derivatives re-

lated with transformation of ψ under SU(2)L , U(1)Y and SU(2)N respectively

are



193 Eurasian Journal of Physics and Functional Materials, Vol.2(3)

Dµ = ∂µ − i
1

2
gwτa

wWa
µ (2)

Dµ = ∂µ − i
1

2
gYYµŶ (3)

Dµψ = ∂µψ + i
1

2
gFψτa

FFa
µ (4)

In our model, two neutrino flavors are assigned into the doublet representation

of SU(2)N as follows

(

ve

vµ

)

(2, 2,−1) (5)

The numbers within parentheses stand for SU(2)L, SU(2)N and U(1)Y quan-

tum numbers ( 2I + 1, 2IN + 1, Y ) where I, IN are isospins of the subgroups

SU(2)L, SU(2)N respectively, and Y is the U(1) -hypercharge.

The SU(2)L ⊗ U(1)Y is W − S model and the doublets are

(

ve

e

)

L

,

(

vµ

µ

)

L

(6)

and the lower sectors eL, µL are assigned as (2, 1,−1) .

We assign all leptons in a left-handed 2 × 2 matrix

(

ve vµ

e µ

)

L

(7)

and two right handed singlets

Re = eR, Rµ = µR (1, 1,−2) (8)

The electric charge formula is given by

Q = I3L + Y/2 (9)

Thus, there are seven vector bosons W i
α, Fi

α (i = 1 ∼ 3) and Yα , associated

with the subgroups SU(2)L, SU(2)N, U(1)Y respectively.

The fermion dynamical Lagrangian is

L f = iR̄eγ
α(∂α + igYYα)Re + iR̄µγα(∂α + igYYα)Rµ

+iTr[L̄γα(∂α + i
1

2
gYYα − i

1

2
gwτi

wW i
α)L]

+iTr[L̄γαi
1

2
gF

1

2
(1 + τ3)Lτi

FFi
α)] (10)
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where

τi
wW

i
µ =

(

W3
µ

√
2W−

µ√
2W+

µ −W3
µ

)

(11)

τi
FF

i
µ =

(

F3
µ

√
2F+

µ√
2F−

µ −F3
µ

)

(12)

1
2

The difference of (10) from [4] is that τi
F only act on neutrino fields and vector 

bosons Fα
i only intermediate neutrino-neutrino interactions, and the term

(1 + τ3) selects the up sectors of L for horizontal symmetry SU(2)N . The proof 
of the fermion dynamical Lagrangian (10) invariant under the group SU(2)L ⊗ 
U(1)Y ⊗ SU(2)N is shown in Appendix A.

Though our horizontal symmetry exists just between neutrinos, the masses of 
vector bosons are given by Higgs scalars vacuum expectation value (VEV) and 
the mass matrix (13) for W3, F3, Y and the diagonal vectors (14) in [4] are also 
suitable for our model





g2
wB gwgFC gwgYB

gwgFC g2
F

D gYgFC

gwgYB gYgFC g2
Y

B



 (13)

The diagonal neutral vectors are

A
µ =

1

NA

(gYW
µ
3 − gwY

µ)

Z
µ =

1

NZ

(gYY
µ + gwW

µ
3 + gFY1F

µ
3 )

G
µ =

1

NG

(gYY
µ + gwW

µ
3 + gFY2F

µ
3 ) (14)

For conveniently comparing with the Weinberg angle in SM, we assume

gF = gcosθ

gY = gsinθsinφ

gw = gsinθcosφ (15)

The interaction Lagrangian can then be written as
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Lint =

√
2

2
gw[W

−

α (ēLγαve + µ̄Lγαvµ) + W+
α (v̄eγ

αeL + v̄µγαµL)]

−

√
2

2
gF[F

−

α v̄eγ
αvµ + F+

α v̄µγαve]

+gsinθsinφcosφAα(ēγαe + µ̄γαµ)

+
y2

y2 − y1
(cos2φ − sin2φ)(ēLγαeL + µ̄LγαµL) · NZZα

+
1

2
(

1 − y2

y2 − y1
v̄eγ

αve −
1 + y2

y2 − y1
v̄µγαvµ) · NZZα

+
y1

y2 − y1
sin2φ(R̄eγ

αRe + R̄µγαRµ) · NGGα

+
1

2

y1

y2 − y1
(sin2φ − cos2φ)(ēLγαeL + µ̄LγαµL) · NGGα

+
1

2
(

y1

y2 − y1
sin2φ −

1

y2 − y1
)v̄eγ

αve · NGGα

+
1

2
(

y1

y2 − y1
sin2φ +

1

y2 − y1
)v̄µγαvµ · NGGα (16)

The coupling constants in (16) compared with the ones in SM will yield

e = gsinθsinφcosφ

GF
√

2
=

g2

8M2
w

sin2θcos2φ (17)

Comparing the third formula in (15) and the second formula in (17), we can

deduce that gw in our model is just the one in SM. Combined with the first

formula in (17), we can deduce that φ is just the Weinberg angle θW in SM.

The maximal mixture between neutrinos implies the coupling constant gF for

interactions between different neutrinos is similar to gZ in SM for the same

flavors. Then we assume the magnitude of gF is the same as gZ in SM.

The flavor conversion probability per unit time

The cross section σ and the scattering probability per unit time

at the start of neutrino flight

We assume neutrinos collide in beam due to their ’Brownian movement’ with

their moments of all possible directions. According to our model, neutrino flavor

conversions are caused by interactions intermediated by Fµ . At the start of

neutrino’s flight, all neutrino-neutrino interactions can be shown in one Feynman

diagram as (18)
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vα
p

//

k
//

N

vβ

vα
p′

//

k′
// vγ

α, β, γ = e, µ, τ (18)

vα is the initial neutrino and N is vector boson which intermediates neutrino-

neutrino interactions such as Z, F± . We assume these vector bosons have masses

similar to Z0 in SM.

For small mass of neutrino, our following calculation will ignore neutrino

mass. Thus, the scattering amplitude of (18) is

iM =
−ig2

N

M2
N

[ūvβ
(k)γµ(1 − γ5)uvα)(p)][ūvγ(k

′)γµ(1 − γ5)uvα(p′)] (19)

mve ∼ mvµ ∼ mvτ ∼ 0 (20)

As is mentioned, the magnitude of gF ∼ gZ(inSM) and then

σCM =
|M|2

16πE2
cm

=
43

× g4
z

16πE2
cmM4

N

(k · k′)(p · p′) =
4 × g4

z

πE2
cmM4

N

(k · k′)(p · p′) (21)

Not that (21) is obtained with the convention that the impact parameter b ∼ 0 .

The neutrino conversion probability generally is obtained on axis, so (21) makes

sense.

In center of mass frame , we have

k · k′ = 1
2(2k · k′) = 1

2 [(k + k′)2
− (m2

β + m2
γ)] =

1
2 [E

2
cm − (m2

β + m2
γ)]

p · p′ = 1
2(2p · p′) = 1

2 [(p + p′)2
− 2m2

α] =
1
2 [E

2
cm − 2m2

α]

And we get scattering cross section in center of mass frame as below

σCM = 4×g4
z

πE2
CM M4

N

(k · k′)(p · p′) =
g4

z×[E2
cm−(m2

β+m2
γ)]×[E2

cm−2m2
α]

πE2
CM M4

N

≈
g4

z×E2
CM

πM4
N

(22)

Let

s = (p + p′)2 = (k + k′)2 = E2
cm (23)

We can obtain the expression about s of section σ



197 Eurasian Journal of Physics and Functional Materials, Vol.2(3)

σ ≈
g4

z

πM4
z

× s (MN ≈ MZ) (24)

Taking the rest frame of the initial neutrino vα(p) before interaction, we have

s = 2p · p′ + 2m2
vα

≈ 2p · p′ ≈ 2mvα Evα (25)

Then we have scattering cross section as below

σ ≈
g4

z

πM4
z

× s ≈
g4

z × 2mvα Evα

πM4
z

(26)

After some calculation of natural units conversion (which we will show in

Appendix B), we get

σ ≈
10−19

16π
(GeV)−2 =

1

4π
× 10−47cm2 (27)

Here we assume mvα = mve ∼ 1eV and the energy of neutrino E = 1GeV .

Generally, the masses of the former two neutrino families ve, vµ are considered far

lighter than the third vτ . Thus when vτ participates in interactions, its mass in

(22) can not be ignored and (27) is not suitable for these interactions and therefore

the cross section of these interactions should obtained from (22) directly. In this

paper, we only want to know whether our predicting conversion probability is

consistent to experiments. For simplicity and without loss of generality, we only

need to evaluate the order of predicting P(ve → vµ) .

Following, we will show how to evaluate conversion probability by cross

section σ . Consider the definition of σ :

σ =
N

nB · NA
=

1

nB · NA

∫

d2b nBP(b). (28)

In equation(28), nB denotes current density of incident particle B; NA denotes

particle number of target particle A; N denotes all scattering events in unit time.

From (28), if beam section is unit area, the value of current density nB equals

incident particle number in unit time. In neutrino beam , target particle is also

particles in beam of the same section and the number of target particle NA = nB .

Thus , according to (28), the value of σ equals the average scattering probability

per neutrino in unit time. That means the value of σ equals the value of average

conversion probability per unit time of one initial neutrino. Because the cross

section formula (21) is established with the convention b ∼ 0 , we will choose the

unit area 1cm2 . Then
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the magnitude of neutrino-neutrino scattering probability per unit time is

P(vα + vα → vβ + vγ) =
1

4π
× 10−47

× 2 (29)

The factor 2 is because 2 initial neutrinos.

Thus our predicting neutrino flavor conversion probability per unit time is

P(vα → vβ) ∼ O(10−47) (30)

The actual conversion probability per unit time at the start of

flight

We can obtain the conversion probability per time (32) by taking a derivative

of the empirical formula (31) with respect to t:

P(vα → vβ) = sin2(2θij)sin2(
t

L0
) L0 =

4E

∆m2
ij

(31)

dP(vα → vβ)

dt
= 2sin2(2θij)sin(

t

L0
)cos(

t

L0
)

1

L0
≈ 2sin2(2θij)

t

L2
0

(32)

The last term of (32) is because t ≪ L0 at the start of flight.

In the first second of flight,

dP(vα → vβ)

dt
≈ 2sin2(2θij)

t

L2
0

= 2sin2(2θij)
1

L2
0

= 2sin2(2θij)(
∆m2

ij

4E
)2 (33)

To estimate the magnitude of (33), we take a special example as the conversion

of ve → vµ . According to experimental data, we take values of (34) into (33):

E ≈ 1GeV

∆m2
12 ≈ 8 × 10−5(eV)2 = 8 × 10−23(GeV)2

sin2(2θ12) = 0.86

(34)

So, the conversion probability per unit time at the start of neutrino flight is

P(ve → vµ) ≈ 2sin2(2θ12)(
8 × 10−23

4
)2

≈ 6 × 10−46 (35)

Apparently, our prediction (30) is very close to the actual value(35).
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Neutrino oscillation

According to our model, neutrino-neutrino interaction is

Lint = −ig′Z ∑
α

v̄αγµ(1 − γ5)vαZµ − igF ∑
α 6=β

v̄βγµ(1 − γ5)vαF±

µ (36)

As is mentioned before, we assume

g′Z ∼ gZ ∼ gF

MZ ∼ MF
, (37)

then the whole approximate effective Hamiltonian can be written in one term

as follows

Hint =
G′

F
√

2

∫

dx3(∑
i

v̄′i L
γµviL)(∑

j

v̄′jL
γµvjL) (38)

Here v′ is not a pure state and is some mixture of several states. While viL, vjL

are initial states. Thus the neutrino mixture is just the macro result of the sum of

all interactions. And we also can conclude that the mixture of neutrino flavors

will not be constant until all neutrino-neutrino interactions arrive at balance.

We can see that there is a equilibrium state for these interactions. There

must have some oscillations before neutrino probability distribution arrive at

equilibrium distribution.

Conclusions

For interactions responsible for neutrino flavor conversions, we constructed the

extension of SM including a horizontal flavor symmetry i.e. SU(2)L ⊗ U(1)Y ⊗

SU(2)N . The horizontal symmetry SU(2)N introduces interactions between

different neutrino flavors and leads to neutrino flavor conversions.

To testify our idea, we have evaluated the flavor conversion probability in-

duced by new interactions by utilizing the definition of cross section. In this

calculation, we assume neutrinos collide due to ’Brown movement’ and the direc-

tion of individual neutrino instantaneous moment in beam is not definite and

generally not consistent to the direction of neutrino flux. Fortunately, the pre-

diction is consistent with experimental data. And we also demonstrate neutrino

oscillation as phenomenon before all neutrino-neutrino interactions arriving at

balance.

Appendix

A. The invariance of the fermion dynamical Lagrangian under

the group SU(2)L ⊗ U(1)Y ⊗ SU(2)N

The invariance of L transforming under the group SU(2)L ⊗U(1)Y ⊗ SU(2)N

can be equivalent to invariance under group SU(2)L , U(1)Y and SU(2)N in the
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meantime:

L → e−i 1
2 αa(x)τa

w L

L → e−i 1
2 β(x)ŶL

L → Lei 1
2 ρb(x)τb

F

(A.1)

α, β, ρ is infinitesimal, τw, τF are generators associated with SU(2)L and

SU(2)N respectively, Ŷ is the weak hypercharge operator related to U(1)Y . We

introduce gauge fields W i
α, Yµ, Fi

α to relate groups SU(2)L , U(1)Y and SU(2)N

respectively.

The covariant derivatives related with transformation under SU(2)L , U(1)Y

and SU(2)N respectively are

Dµ = ∂µ − i 1
2 gwτa

wWa
µ

Dµ = ∂µ − i 1
2 gYYµŶ

DµL = ∂µL + i 1
2 gFτa

FFa
µ

(A.2)

Define the gauge transformation of gauge fields W i
α, Yµ, Fi

α as follows

igwτaWa
µ = igwτaWa

µ − i∂µαbτb
−

1
2 gw[τaWa

µ, αbτb]

Yµ = Yµ −
1

gY
∂µβ

igFτaFa
µ = igFτaFa

µ − i∂µρbτb
−

1
2 gF[τ

aFa
µ, ρbτb]

(A.3)

The fermion dynamical Lagrangian invariant under the group SU(2)L ⊗

U(1)Y ⊗ SU(2)N is

L f = iR̄eγ
α(∂α + igYYα)Re + iR̄µγα(∂α + igYYα)Rµ

+iTr[L̄γα(∂α + i 1
2 gYYα − i 1

2 gwτi
wW i

α)L]
+iTr[L̄γαi 1

2 gF
1
2(1 + τ3)Lτi

FFi
α)]

(A.4)

In (A.4), for left-handed lepton, the value of the hypercharge Y is -1 and for

right-handed lepton R, the value of the hypercharge Y is -2.

With the transformation of these gauge fields (42), the fermion dynamical

Lagrangian (A.4) will be invariant under the group of SU(2)L ⊗U(1)Y ⊗ SU(2)N .

We will prove it term by term.

Proof:

1. The first two terms in (A.4)

Re → e−i 1
2 β(x)ŶRe → (1 − i

1

2
β(x)Ŷ)Re = (1 + iβ(x))Re

The covariant derivative is

Dµ = ∂µ + igYYµ
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and the transformation of gauge field

Yµ → Yµ −
1

gY
∂µβ

We only need to prove

Dµ(1 + iβ(x))Re → (1 + iβ(x))DµRe

i.e.

(∂µ + igYYµ)[(1 + iβ(x))Re] → (1 + iβ(x))(∂µ + igYYµ)Re (A.5)

Left of (A.5) =

i∂µβRe + (1 + iβ)∂µRe + igYYµRe − gYYµβRe

→ i∂µβRe + (1 + iβ)∂µRe + igY(Yµ −
1

gY
∂µβ)Re − gY(Yµ −

1
gY

∂µβ)βRe

→ ∂µRe + i∂µβRe + iβ∂µRe + igYYµRe − i∂µβRe − gYYµβRe + ∂µββRe

→ ∂µRe + iβ∂µRe + igYYµRe − gYYµβRe + ∂µββRe

Right =

(1 + iβ(x))(∂µ + igYYµ)Re

→ ∂µRe + iβ∂µRe + igYYµRe − gYYµβRe

Omitting the higher order of O(gβ) , we can obtain

(∂µ + igYYµ)[(1 + iβ(x))Re] → (1 + iβ(x))(∂µ + igYYµ)Re

2. The third and fourth term

We will prove the invariance of these two terms by prove invariance under

group SU(2)L , U(1)Y and SU(2)N respectively.

The transformations of the gauge fields are

τaWa
µ → τaWa

µ −
1

gw
∂µαbτb + i 1

2 [τ
aWa

µ, αbτb]

Yµ → Yµ −
1

gY
∂µβ

τaFa
µ → τaFa

µ −
1

gF
∂µρbτb + i 1

2 [τ
aFa

µ, ρbτb]

(1) (A.4) is invariant under U(1)Y
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L → [1 + i
1
2 β(x)]L

Dµ = ∂µ + i
1
2 gYYµ

Which we need to prove is

L → [1 + i
1
2 β(x)]L

Dµ[1 + i
1
2 β(x)]L → [1 + i

1
2 β(x)]DµL,

that is

(∂µ + i
1

2
gYYµ)[1 + i

1

2
β(x)]L → [1 + i

1

2
β(x)](∂µ + i

1

2
gYYµ)L (A.6)

with

Yµ → Yµ −
1

gY

∂µβ

Left of (A.6) =

(∂µ + i
1
2 gYYµ)[1 + i

1
2 β(x)]L

= i
1
2 ∂µβ(x)L + [1 + i

1
2 β(x)]∂µL + i

1
2 gYYµL −

1
4 gYYµβL

→ i
1
2 ∂µβ(x)L + [1 + i

1
2 β(x)]∂µL + i

1
2 gY(Yµ −

1
gY

∂µβ)L −
1
4 gY(Yµ −

1
gY

∂µβ)βL

≈ [1 + i
1
2 β(x)]∂µL + i

1
2 gYYµL

The right of (A.6) is

[1 + i
1
2 β(x)](∂µ + i

1
2 gYYµ)L,

= [1 + i
1
2 β(x)]∂µL + i

1
2 gYYµL −

1
4 βgYYµL

≈ [1 + i
1
2 β(x)]∂µL + i

1
2 gYYµL

Thus (A.6) can be established.

(2) (A.4) is invariant under SU(2)L

L → [1 − i
1
2 αa(x)τa]L

Dµ = ∂µ − i
1
2 gwτaWa

µ
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Which we need to prove is

Dµ[1 − i
1

2
αa(x)τa]L = [1 − i

1

2
αa(x)τa]DµL,

that is

(∂µ − i
1

2
gwτaWa

µ)[1 − i
1

2
αa(x)τa]L = [1 − i

1

2
αa(x)τa](∂µ − i

1

2
gwτaWa

µ)L (A.7),

with

τaWa
µ → τaWa

µ −
1

gw
∂µαbτb + i

1

2
[τaWa

µ, αbτb]

The left of (A.7) is

(∂µ − i 1
2 gwτaWa

µ)[1 − i 1
2 αa(x)τa]L

= −i 1
2 ∂µαa(x)τaL + [1 − i 1

2 αa(x)τa]∂µL − i 1
2 gwτaWa

µL −
1
4 gwτaWa

µαa(x)τaL

→ −i 1
2 ∂µαa(x)τaL + [1 − i 1

2 αa(x)τa]∂µL − i 1
2 gw{τaWa

µ −
1

gw
∂µαbτb + i 1

2 [τ
aWa

µ, αbτb]}L

−
1
4 gw{τaWa

µ −
1

gw
∂µαbτb + i 1

2 [τ
aWa

µ, αbτb]}αc(x)τcL

= −i 1
2 ∂µαa(x)τaL + [1 − i 1

2 αa(x)τa]∂µL − i 1
2 gwτaWa

µL + i 1
2 ∂µαbτbL

+ 1
4 gw[τaWa

µ, αbτb]L −
1
4 gwτaWa

µαbτbL

= [1 − i 1
2 αa(x)τa]∂µL − i 1

2 gwτaWa
µL + 1

4 gw[τaWa
µ, αbτb]L −

1
4 gwτaWa

µαbτbL

= [1 − i 1
2 αa(x)τa]∂µL − i 1

2 gwτaWa
µL −

1
4 gwαbτbτaWa

µL

Here, we omitting the higher orders.

The right of (A.7)=

[1 − i 1
2 αa(x)τa](∂µ − i 1

2 gwτaWa
µ)L

= [1 − i 1
2 αa(x)τa]∂µL − i 1

2 gwτaWa
µL −

1
4 gwαbτbτaWa

µL

Thus (A.7) can be established.

(3) (A.4) is invariant under the horizontal group SU(2)N

L → L′ = L(1 + i
1

2
ρb(x)τb)

DµL = ∂µL + i
1

2
gFLτaFa

µ
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Which we need to prove is

Dµ[L(1 + i
1

2
ρb(x)τb)] → (DµL)(1 + i

1

2
ρb(x)τb),

that is

∂µ[L(1 + i 1
2 ρb(x)τb)] + i 1

2 gFL(1 + i 1
2 ρb(x)τb)τaFa

µ

→ (∂µL + i 1
2 gFLτaFa

µ)(1 + i 1
2 ρb(x)τb)

(A.8)

with

τaFa
µ → τaFa

µ −
1

gF
∂µρbτb + i

1

2
[τaFa

µ, ρbτb]

The left of (A.8) is

∂µ[L(1 + i 1
2 ρb(x)τb)] + i 1

2 gFL(1 + i 1
2 ρb(x)τb)τaFa

µ

= ∂µL(1 + i 1
2 ρb(x)τb) + Li 1

2 ∂µρb(x)τb + i 1
2 gFLτaFa

µ −
1
4 gFLρb(x)τbτaFa

µ

→ ∂µL(1 + i 1
2 ρb(x)τb) + Li 1

2 ∂µρb(x)τb + i 1
2 gFL{τaFa

µ −
1

gF
∂µρbτb + i 1

2 [τ
aFa

µ, ρbτb]}

−
1
4 gFLρc(x)τc

{τaFa
µ −

1
gF

∂µρbτb + i 1
2 [τ

aFa
µ, ρbτb]}

≈ ∂µL(1 + i 1
2 ρb(x)τb) + Li 1

2 ∂µρb(x)τb + i 1
2 gFLτaFa

µ − i 1
2 L∂µρbτb

−
1
4 gFL[τaFa

µ, ρbτb]− 1
4 gFLρbτbτaFa

µ

= ∂µL(1 + i 1
2 ρb(x)τb) + i 1

2 gFLτaFa
µ −

1
4 gFLτaFa

µρbτb

The right of (A.8) is

(∂µL + i 1
2 gFLτaFa

µ)(1 + i 1
2 ρb(x)τb)

= ∂µL(1 + i 1
2 ρb(x)τb) + i 1

2 gFLτaFa
µ −

1
4 gFLτaFa

µρbτb

Thus (A.8) can be established.

So, (A.4) is invariant under SU(2)L ⊗ U(1)Y ⊗ SU(2)N .

B. The cross section of neutrino-neutrino interaction σ

We assign neutrino energy Ev = 1GeV ,and some known paramters as below

mve ≈ 1eV = 10−9GeV

MZ ≈ 90GeV

g2
Z =

M2
Z

4
√

2
GF

GF = 1 × 10−5/(GeV)2
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Taking above values into the cross section formula, we will get

σ ≈
g4

z × 2mvα Evα

πM4
z

=

M4
Z

32 × G2
F × 2mve Eve

πM4
z

=
10−19

16π
(GeV)−2 (B.1)

Using the conversion of natural units, we can get

1cm = 5 × 1013GeV−1

→ GeV−1 = 0.2 × 10−13cm

→ GeV−2 = 0.04 × 10−26cm2

Thus

σ ≈
10−19

16π
(GeV)−2 =

1

4π
× 10−47cm2

Because the cross section formula (B.1) is obtained with the convention that

the impact parameter b ∼ 0 , we adopt the unit cm2 .
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