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Analysis of the nuclear physics experiment often requires Monte Carlo simulation of the detector setup.
Such kind of simulations often requires a quite advanced model of nuclear interaction. In this work
we describe application of Monte Carlo simulation in the nuclear physic experiment, and discuss on
example of elastic scattering how to apply well known High Energy Approximation (or Glauber model)
to Monte Carlo simulation of the experimental setup.
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Introduction

The Monte Carlo (MC) method [1-3] is widely used for simulations of various

processes in different areas of science. In the present study, this method serves for

verification of certain theoretical model of nuclear reaction. The primary events

are generated on the basis of the theoretical model and the resulting data of these

simulations are compared to the experimental data, thus verifying the model.

The general scheme of such analysis is shown in scheme (Figure 1).
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Figure 1. Analysis of experimental data based on MC simulations.

The first step, implemented by program (or subprogram), is called Primary

Event Generator.

As one can see in Figure 1 Primary Event Generator connects MC simulation

with a theoretical model. Thus, the Monte Carlo simulation can be divided into

three steps:

1. Primary event generation;

2. Particle transport through virtual detector setup;

3. Evaluation of the detector response.

A good example of how such scheme is realized for nuclear data analysis

in most of the leading scientific nuclear laboratories in Europe is the GEANT

code. This comprehensive tool, used for simulating the interactions of various

particles with different materials under various conditions, is developed and

maintained by the European Organization for Nuclear Research (CERN). The

detailed description one can find in Refs. [4, 5]. The input data for GEANT

are the momenta of the particles, called primary events should be generated

independent way in the frames of the physical model of a certain nuclear reaction.

Note, that the primary event generator should satisfy some common demands:

1. Relative simplicity of theoretical model for the fastest event generation;

2. Use of the same dispersion relation as in the particle transport codes (for

example GEANT);

3. To make the tool easy-to-use for experimentalists.
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A general aim of the work is to create such tool for primary event generation,

that will serve for making comparison of the model calculations with experimental

data.

In the present paper we show how to adopt theoretical model for primary

event generator.

As a first approach we prepare the primary events for the reactions of elastic

scattering of light fragmented (few-body) nuclei [6-8]on the basis of Glauber-type

models, which allows for relatively simple and fast calculations.

Note, that the Glauber-type models needs modification in order to regard for

the energy conservation law. For this we introduce the term accounting for the

phase volume and transit from the eikonal transferred momentum to realistic

transferred momentum. The calculations of reactions with few-body nuclear

systems demand performing the multi-dimensional integration. And the most

efficient way for this is the MC integration. Thus, the MC simulation is used both

at the primary event generation step and the step of beam transport through the

experimental setup.

Cross section and reaction rate

Cross section of the elastic scattering with arbitrary number of products in final

state can be written as

σ ∝

∫
T

2dV
n, (1)

where

dV
n = δ

4 (PI − PF)
n

∏
i=1

d3pi

Ei

is the n -body phase space, responsible for the energy and momenta conservation

law.

This representation of the cross section is suitable for the primary event

generator because the energy and momenta conservation law for each participant

is factorized.

As shown in [5] the Eq. (1) can be written as

∫
T

2dV
n =

∫
T

2
R

n(ε1, . . . , εk)
k

∏
i=1

dεi, k = 3n − 4,

where εi are independent kinematiclal varaibles.

For the case of the elastic scattering and binary reaction one obtains

R
2(k, E) =

k

E
d2k̂, (2)

where k is the momenta in center-of-mass system (c.m.s.), E — the system total

energy. Thus for the binary reaction, the phase space is a sphere.

For the non-relativistic limit, E reduces to sum of the reaction product masses

and (2) can be writen as

R
2(k) =

k

m1 + m2
d2k̂, (3)

where m1 and m2 are the masses of the reaction products.
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The elastic scattering T-matrix elements

The total cross section of the elastic scattering can be writen as

σel =
∫

∣

∣F
(

k′, k
)∣

∣

2
d2k̂′, (4)

where

F
(

k′, k
)

≡ F (q)

is the scattering amplitude, k , k′ are the c.m.s. momenta in initial and final

states, q = k′
− k are the transferred momenta.

Comparing equations (1), (3), and (4) one can see that the T-matrix element is

connected to the scattering amplidude in a quite simple way:

Tel. =

√

1

k′
F. (5)

Also note that the momentum k′ integration over the volume of the sphere is

equivalent to the momentum q integration over the squere of the circle:

d2k̂′ = sin θdθdφ =2 sin
θ

2
cos

θ

2
dθdφ =

1

k2
qdqdφ,

d2k̂′ =
d2q

k2
.

Elastic scattering in the frame of the Glauber model

The Glauber model [9, 10] is a well developed approach of nuclear reaction theory.

In the frame of the Glauber model, the scattering amplitude of a fragment is

defined as

F(q̃) =
k

i

∫

f (q̃, b)d2b, (6)

where q̃ is eikonal transfered momentum; b is the impact parameter of the

fragment and

f (q̃, b) =
eiq̃b

2π
[exp (iX(b))− 1] ,

here X is optical phase. The integration in (6) is over the plane orthogonal to k .

Using the integral representation of the Bessel function J0 :

J0(χ) =
1

2π

∫ 2π

0
eiχ cos φdφ

with the case of the symmetric potential eq. (6) can be integrated over the impact

parameter angle

F(q̃) =
k

i

∫

f (q̃, b)bdb,

where

f (q̃, b) = J0 (q̃b) [exp (iX(b))− 1] .
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and in this case the scattering amplitude doesn’t depend on direction q̃ . The

optical theorem in the Glauber is written as

σ =
4π

k
ℑF(0) =

∫
|F(q̃)|2 d2q̃

k2
, (7)

and it can be seen that the expression for the imaginary part ℑ of the forward

scattering amplitude F(k, k′) = F(0) in the high-energy approximation satisfies

the optical theorem, unlike, for example, the Born approximation.

One of key features of the model is that instead of energy conservation, we

get longitudinal momentum conservation.

In terms of phase space this means that the momentum vector k′ moves not

on the sphere but on the plane. So the Glauber model has drastically different

phase space.

In terms of the transferred momenta this difference leads to changes in the

region of integration over d2q from the area restricted by 2k circle to the whole

plane.

Therefore energy conservation law can be formally secured in the frame of

the Glauber model by claming relation between q and q̃ as follow

q̃ = q = 2k sin(θ/2), (8)

q̃ = k tan θ, q = 2k sin(θ/2), (9)

where θ is the scattering angle in c.m.s. In the Eq. (8) (suggested in [9]) unitarity

is broken but the phase space is preserved. In the Eq. (9) the unitarity is preserved

but phase space is significantly modified.

However the relation (8) should be preferably considered for events genera-

tion.

Monte Carlo calculation

Finaly we discuss an application of the Monte Carlo method for cross section

calculations and the event generation.

In the case of potentials with finite range R , for the evaluation of the inte-

grals in (6) it is convenient to replace integration over the impact parameter by

integration over some dimensionless parameter

B = b2/R2, (10)

thus

F(q̃) = R2 k

2i

∫ 1

0
f (q̃, R

√
B)dB. (11)

For integration over q̃ we apply the substitution

C = 1 − cos θ, q̃ = q = k
√

2C. (12)
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Now we can write expression for the cross section

σ = 2πR2ℑ
[

i
∫ 1

0

(

1 − exp
(

iX(R
√

B)
))

dB

]

, (13)

σ
′ =

π

2
R4k2

∫ 2

0
dC

∫ 1

0
dB

∫ 1

0
dB′ f (k

√
2C, R

√
B) f ∗(k

√
2C, R

√
B′). (14)

Equation (14) represents the transformed cross-section (13), where integration is

carried out over the new variables C , B and B′ , related to the scattering angle

θ and the transferred momentum q , respectively.

Eqs. (13) and (14) can be calculated numerically

σ = 2πR2 1

N
ℜ
[

N

∑
i=1

(

1 − exp
(

iX(R
√

Bi)
))

]

, (15)

σ
′ =

π

4
R4k2

N

∑
i=1

f (k
√

2Ci, R
√

Bi) f ∗(k
√

2Ci, R
√

B′
i). (16)

Here B and B′ are the random numbers uniformly distributed in range [0, 1] ;

C — in range [0, 2] .

The comparison function for generating events with momentum distibution

k̂′
i corresponging to (14) using von Neumann rejection can be evaluated as

dσ(k) =
π

2
R4k2ℜ

(

f (k
√

2C, R
√

B) f ∗(k
√

2C, R
√

B′)
)

. (17)

Numerical example

We make test calculation for the case of the square well potential with width R

and depth V . The optical phase in this case

X(B) = −2α
√

1 − B, α =
VR

h̄v
,

where v is the c.m.s velocity. And the total cross section can be calculated

analytically as

σ = πR2

(

2 +
1

α2
− 2

α

[

cos(2α)

2α
+ sin(2α)

])

. (18)

The calculation parameters and results presented in Table 1. With reasonable

numbers of events the integrals (15) and (16) converge.

As expected substitution (8) significantly breaks optical theorem, where σa

was calculated according to Eq. (18), σn - according to Eq. (15), ℜσ
′ and ℑσ

′

were calculated according to the Eq. (16).
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Table 1.

Calculation parameters and results.

N 106

v 0.25

R 5 fm

V 3 MeV

k 1.23 fm-1

σa 14.23 fm2

σn 14.23 fm2

ℜσ
′ 3.593 fm2

ℑσ
′ −4.4 · 10−4 fm2

Figures 2 and 3 show distribution of generated event by scattering angle and

distribution of generated event by transferred momentum, respectively.
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Figure 2. Event distribution by scattering angle in center-of-mass system.
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Figure 3. Event distribution by transfered momentum.
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Results and conclusion

We discussed the simple case of elastic scattering and provide expression (17) for

using in primary event generator.

In the paper we considered the example of the phase space modification. It was

found that in the Glauber-type model the regard for the energy- and momentum

conservation law leads to transfer from the eikonal transferred momentum to

the "realistic" transferred momentum. As the result of the angular distribution

calculations, we got the elastic scattering into back-angles.

Note that for generation of the events we don’t need calculations of the

scattering amplitude for each event, the cross section is reduced to the triple

integration over two impact parameters and transferred momentum and the von

Neumann rejection method can be applied for the three-dimensional distribution,

that provides convergence of the method. The question whether this procedure

can also be expanded and adapted for other cases of more complex reactions,

for example, inelastic scattering when the overlap of different states should be

calculated, remains open.
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