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We investigate the Coulomb breakup of the 11 Be halo nuclei on a lead target within non-perturbative
time-dependent approach in a wide range of beam energy (5–70 MeV/nucleon) including the low-lying
resonances in different partial and spin states of 11 Be. We have found considerable contribution of the
low-lying resonances ( 5/2+ , 3/2− and 3/2+ ) to the breakup cross section of 11 Be. The obtained
results are in good agreement with existing experimental data at 69 MeV/nucleon. The developed
computational scheme opens new possibilities in investigation of Coulomb, as well as nuclear, breakup
of other halo nuclei on heavy, as well as, light targets.
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Introduction

Since the discovery of radioactive secondary beams [1], exotic structures have been

the subject of both theoretical and experimental intensive research [2]. In the study

of halo nuclei, the Coulomb breakup cross section provides important information

about the structure and characteristics of the halo system. Many theoretical

approaches such as perturbation expansion [3, 4], adiabatic approximation [5],

eikonal model [6], coupled-channels with a discretized continuum (CDCC) [7,
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8], dynamical eikonal approximation (DEA) [9], numerical integration of a three-

dimensional time-dependent Schrödinger equation (TDSE) [10-14] and others

have been applied to breakup analysis of one-nucleon halo and two-nucleon halo

nuclei.

In our recent work [15], the influence of resonance states ( 5/2+ , 3/2− and

3/2+ ) to the Coulomb breakup of 11 Be nucleus on a heavy ( 208 Pb) target is

investigated within the semiclassical and quantum-quasiclassical time-dependent

approaches. The time-dependent Schrödinger equation is integrated with a non-

perturbative algorithm on a three-dimensional spatial mesh. The method [10, 11,

15] makes use of values of the wave function at mesh points in angular space,

in the spirit of the discrete-variable representation or Lagrange-mesh methods

[16]. The radial functions are approximated with variable-step finite-difference

techniques [11, 16]. Such a numerical technique has been successfully applied to

the Coulomb breakup of loosely bound two-body systems like 11 Be [10, 11], 17 F

[16], and 15 C [11] at intermediate beam energies.

Also, in [15] we extended theoretical model for breakup calculations by

quantum-quasiclassical approach for lower beam energies (5–30 MeV/nucleon).

It was shown that this numerical technique permits to include correctly the

low-lying resonances in different partial and spin states of 11 Be in a wide range

of beam energy (5–70 MeV/nucleon). Within the framework of that work [15],

the main attention was paid to the calculations of the breakup cross section and

it was not possible to consider in detail the computations of the energy levels of
11 Be nucleus.

In present work we describe in detail the calculation of the bound and resonant

states of the 11 Be, which is an important element of the computational scheme. In

addition in this paper we will discuss the parameterization of potential between

the neutron and 10 Be core and how the resonant states were included in the

analysis of the breakup reaction.

Theoretical description

The breakup reaction 11 Be+ 208 Pb →10 Be+n+ 208 Pb in the projectile rest frame

by the time-dependent Schrödinger equation (TDSE):

iℏ
∂

∂t
Ψ(r, t) = H(r, t)Ψ(r, t) = [H0(r) + VC(r, t)]Ψ(r, t) (1)

where Ψ(r, t) is the wave packet of the neutron relative the 10 Be-core. Here

H0(r) = −
ℏ2

2µ
∆r + V(r) (2)

H0(r) is the Hamiltonian describing relative halo nucleon-core motion with

reduced mass µ = mnmc/M , where mn, mc and M= mn + mc are the neutron,
10 Be-core, and 11 Be masses, respectively.

The halo neutron is weakly bound to the 10 Be core nucleus treated as a

structureless particle by the potential V(r), which is the sum of an l-dependent
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central potential Vl(r) and a spin-orbit interaction Vs
l (r)(ls) . The interaction of

the target nucleus with the projectile is described by the time-dependent Coulomb

potential

VC(r, t) =
ZcZte

2

|mnr/M + R(t)|
−

ZcZte
2

R(t)
, (3)

where Zc and Zt are charge numbers of the core and target, respectively, and

a straight-line trajectory R(t) = b + v0t is the relative coordinate between the

projectile and the target, where b is the impact parameter and v0 is the initial

velocity of 11 Be relative Pb-target [10, 12-15].

The time evolution of Ψ(r, t) following from Eq. (1) is calculated according

to the above scheme starting from the initial state Ψ(r, Tin) = φ2s , where φ2s(r)
is the ground state of the 11 Be. Following the parameterization suggested in

[17], the interaction V(r) between the neutron and the 10 Be core is chosen for

bound and resonance states as the sum of a spherical Woods-Saxon potential

Vl(r) = −Vl f (r) , where f (r) = 1/(1 + exp((r − R0)/a)) and of a standard

spin-orbit interaction

Vs
l (r) = Vls

1

r

d

dr
f (r)(ls) . (4)

The standard value Vls = 21 MeV fm2 is used for the depth of the ls potential

for a p-shell nucleus [12]. The parameters of the Woods-Saxon potentials, as

radius R0 , diffuseness a and depth Vl are given in Table 1 and the selection

of these parameters will be discussed further for bound and resonant states

separately.

Table 1.

Parameters of the potentials.

Vl,even (MeV) Vl,odd (MeV) Vls(MeV fm2) a (fm) R0(fm) States

62.52 39.74 21.0 0.60 2.585 1/2±, 5/2+, 3/2+

6.80 21.0 0.35 2.500 3/2−

The eigenfunctions of Hamiltonian H0 with energy E are denoted as φl jm(E, r) ,

H0(r)φl jm(r)(E, r) = Eφl jm(E, r) (5)

here j is a projectile total momentum j = l + s , resulting from the coupling of

the orbital momentum l and spin s of the neutron, m is a magnetic quantum

number.

For discretizing with respect to the radial variable r, a sixth-order (seven

point) finite-difference approximation on a quasiuniform grid has been used

on the interval r ∈ [0, rm] with rm = 1200 fm. The grid has been realized

by mapping r → x the initial interval onto x ∈ [0, 1] by the formula r =
rm(e8x − 1)/((e8 − 1)) [11, 16]. The stationary Schrödinger equation (5) and the

TDSE (1) are solved on the same quasiuniform radial grid.
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All details of the numerical solution of the Schrödinger equation, the con-

vergence and accuracies of the computational scheme are described at [10, 11,

15].

The parameterization of the interaction between the

neutron and core

In this section we describe in detail the selection of parameters of the spherical

potential Vl(r) = −Vl/(1 + exp((r − R0)/a)) , describing the energy spectrum

of 11 Be nucleus, which was previously used in [15], but it was not possible to

discuss it minutely at [15].

The depths of the Woods-Saxon potentials have been determined as Vl = 62.52

MeV (l-even) and Vl = 39.74 MeV (l-odd) [9] in order to reproduce the 1/2+

ground state of 11 Be at -0.503 MeV, the 1/2− excited state at -0.183 MeV and two

resonance states 5/2+ and 3/2+ with the position of peaks at E ( 5/2+ )= 1.232

MeV and E ( 3/2+ )= 3.367 MeV [18, 19]. As it is shown in Table 1 for all these

states, except the resonance 3/2− , the radius is R0 = 2.585 fm and the diffuseness

is a = 0.6 fm.

Thus, in solving of the radial Schrödinger equation (5) for a neutron-core

system four set of potentials were used. In the discrete spectrum the parameter

Vl = 62.52 MeV of the Woods-Saxon potential reproduces ground state at E =-0.503

MeV (l=0, 1/2+ ) and the depth Vl = 39.74 MeV describes the first excited state

(l=1, 1/2− ). In the continuous spectrum ( E >0) for l=2 with the set of parameter

Vl = 62.52 MeV from [9], we got the positions of two resonances 3/2+ (l-1/2)

and 5/2+ (l+1/2) as E ( 5/2+ )= 1.232 MeV and E ( 3/2+ )= 3.367 MeV [18, 19].

To fix the position of the 3/2− resonance (l=1) close to the theoretical [18] and

experimental [19] value E ( 3/2− )= 2.789 MeV, we tuned the set of parameters

Vl , a and R0 ourselves (see Table 1) at our recent investigation [15], since the

parameters of [9] do not reproduce the position of resonance 3/2− . For l ≥ 3,

the spherical potential V(r) was set to zero.
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Figure 1. The effective potential and radial part φl j(E, r) of the ground state ( 1/2+ ) of 11 Be ( l =0) wave function.

In Figure 1 we present the radial part φl j(E, r) of the ground state ( 1/2+ )

of 11 Be wave function φl j(E, r) = φl j(E, r)Ylm(r̂) , which is the solution of the

eigenvalue problem (5) with l =0 at discrete spectrum normalized to unity
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(
∫
(φl j(E, r))2dr = 1) . Here the internal Hamiltonian H0(r) (2) includes po-

tentials, the summation of which translates the so-called effective potential of the

relative neutron-core motion, with the parameterization for l =0 discussed above.

The effective potential (see Figure 1)

Ve f f = Vl(r) + Vs
l (r)ls +

ℏ2l(l + 1)

2µr2
(6)

consists of a Woods-Saxon potential Vl(r) , a spin orbital term of interaction

Vs
l (r)ls and centrifugal barrier .

For the case with the orbital momentum l =1, two sets of parameters were

used for discrete ( l -1/2) and continuous ( l +1/2) spectrum. As it is shown in

Figure 2 (a), the position of the 3/2− resonance (red line) overtop the shape of

the potential, calculated with the set of parameters from [9], which shows the

feasibility of selecting the potential by ourselves at [15] for this level.
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Figure 2. a) The effective potential, describing first excited 1/2− state ( l -1/2) at E =-0.184 MeV and resonance 3/2−

( l +1/2) with the position E = 2.788 MeV ( l =1). b) The effective potential, calculated for l = 2 to reproduce the resonances
3/2+ ( l -1/2) with the position of the energy E = 3.367 MeV (blue dashed dots) and 5/2+ ( l +1/2) state with the peak
at E = 1.232 MeV (red line).

Performing integration of the eigenvalue scattering problem ( Eq. 5 when

E >0) for l = 2 with the parameters Vl = 62.52 MeV, R0 = 2.585 fm and a =0.6

fm, we reproduce the position of peaks at E ( 5/2+ )= 1.232 MeV and E ( 3/2+ )=

3.367 MeV [18, 19], which is shown in Figure 2 b).

The radial p-wave function φl j(E, r) of excited ( 1/2− ) bound state (blue line

in Figure 3a)) and scattering p3/2 wave function (red line in Figure 3b)) φl j(E, r)
in the continuum are the solutions of the eigenvalue problem (5) on the same

radial grid. The radial wave functions of a d3/2 and d5/2 scattering states are

plotted at c) and d) part of Figure 3.

The scattering states are computed at energies corresponding to the positions

of the three resonances 3/2− , 3/2+ and 5/2+ . The radial part of the eigenfunc-

tion of the Hamiltonian H0(r) (5) φl j(kr) in the continuum spectrum ( E >0) is

normalized φl j(kr) → 0, if kr → 0 in accordance with the boundary condition

φl j(kr) →
sin(kr−πl

2 )
k , if kr → ∞ .

Thus, we present here our numerical results of calculation of the bound

and continuum resonant states of H0(r) , which is a necessary initial value for

integration of time-dependent Schrödinger equation (1) and breakup analysis of

halo nuclei.
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Figure 3. The radial part of p1/2 wave function φl j(E, r) of excited ( 1/2− ) bound state (a) of discrete spectrum and
scattering p3/2 wave function φl j(kr) in the continuum (b) ( l =1), scattering d3/2 and d5/2 wave functions φl j(kr) of
3/2+ (c) and 3/2+ (d) resonances ( l =2).

Cross section of the breakup reaction

The total cross section of the breakup reaction 11 Be+ 208 Pb →10 Be+n+ 208 Pb is

calculated as a function of the relative energy between the emitted neutron and

the core nucleus including neutron interaction with the core in the final state of

the process:

dσbu(E)

dE
=

4µk

ℏ2

∫ bmax

bmin

∑
j=l+s

∑
lm

|
∫

φl j(kr)Ylm(r̂)Ψ(r, Tout)dr|2bdb (7)

Here φl jm(kr) is the radial part of the eigenfunction of the Hamiltonian H0(r)

(5) in the continuum spectrum ( E = k2h̄2/(2µ) > 0 ), normalized to spherical

Bessel function jl(kr) as kr → ∞ . The summation over ( l, m ) in (6) includes all

16 partial waves up to lmax = 3 inclusive [15].

Time evolution starts at initial time Tin and stops at final time Tout by iteration

over NT time steps ∆ t as explained in [11]. The initial (final) time Tin ( Tout ) has

to be sufficiently big |Tin|, Tout → +∞ , from the demand for the time-dependent

potential VC(r, t) to be negligible at the beginning (end) of the evolution process.

We select the same time interval: Tin = -20 ℏ/MeV and Tout = 20 ℏ/MeV, and

fixed time step ∆ t = 0.01 ℏ/MeV as in Ref. [10, 11].

Investigation of the halo nuclei through the Coulomb breakup of the system

is important. As it is known, experiments for the breakup reaction 11 Be+ 208 Pb

→10 Be+n+ 208 Pb [20, 21] were performed at intermediate beam energies (69 and

72 A MeV) and many theoretical calculations and processing [9-12, 17] were
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made taking into account only bound states. In our recent work [15] we have

investigated the influence of low-lying resonances of 11 Be into breakup reactions,

and here we would like to show how the inclusion of resonances and the nuclear

interaction effects contribute to the cross section of the Coulomb breakup.

The interaction VC(r, t) of the target with the projectile (discussed at previous

section) assumed to be purely Coulombic (3) and the nuclear interaction effects

were simulated by a cutoff bmin = 12 fm at the Eq. (6). Including of nuclear

interaction between the projectile and the target afford to make a calculations

with smaller impact parameters starting with bmin = 5 fm [15]. In this section we

study the contribution of the nuclear part of the projectile-target interaction in

the breakup cross sections at low beam energies.

Following [11], the optical potential for the nuclear part ∆VN(r, t) = VcT(rcT)+
VnT(rnT) between the target and projectile-nucleus interaction is:

V(r, t) = VC(r, t) + ∆VN(r, t) . (8)

here rcT and rnT are the core-target rcT(t) = R(t) + mnr/M and neutron-target

rnT(t) = R(t)− mcr/M relative variables and optical potentials VcT and VnT

have the form:

VxT(rxT) = −Vx f (rxT, RR, aR)− iWx f (rxT, RI , aI) (9)

with Woods-Saxon form factors f (rxT, RR, aR) = 1/(1 + exp(rxT − R)/a) , where

x stands for either core or neutron. We use here the parameters of the optical

potential from the earlier work [11].

Figure 4 illustrates the calculations of breakup cross section with pure Coulomb

(3) and additional nuclear part of interaction (7) for lower beam energy of 10

MeV/nucleon taking into account bound and three resonant states. Also the

results obtained by Coulomb potential (3) with considering only two bound states

are given for comparison. It is shown that the cutoff Coulomb approximation

(3) underestimates the breakup cross section including the nuclear interaction

between the projectile and the target (7) and the inclusion of three resonance

states into the breakup reaction considerably corrects the breakup cross sections,

especially near the resonant energy 1.23 MeV of the 5/2+ resonance.

It can be seen that with a decreasing of beam energy, the influence of the

nuclear effect in the projectile-target interaction becomes more significant for

the breakup cross section. The contribution from the resonance states remains

noticeable when the nuclear interaction between the target and the projectile is

included, and the peak due to the 5/2+ resonance is clearly visible at low beam

energies.

Conclusion

This work is a kind of addition to our recently published new results in [15],

where we for the first time included low-lying resonant states of the 11 Be nucleus

in the calculation of the breakup cross section and extended the theoretical model
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Figure 4. Breakup cross sections calculated with only bound states (dotted curve) in the interaction between the neutron
and the 10 Be-core and taking into account three resonant states (dashed curves) for pure Coulomb potential (3) and with
(7) adding of nuclear interaction (full lines) between the projectile and target for the case of including both bound and
resonant states ( 5/2+ , 3/2− , 3/2+ at 10 MeV/nucleon.

to low beam energies. Unfortunately, in that work [15] it was not possible to

describe in detail how these resonances were included in the numerical technique.

Here we describe in depth the results of calculating the spectrum and resonant

states of the 11 Be, which is an important element of the computational scheme. In

this paper we paid attention to discuss the parameterization of potential between

the neutron and 10 Be core and illustrate these internal effective potential for

different partial and spin states of the 11 Be nucleus.

As an example for a low beam energy at 10 MeV/nucleon, we showed a

noticeable contribution from the low-lying resonances ( 5/2+ , 3/2− and 3/2+ )

and the influence of nuclear effects in the interaction of the projectile with the

target. In particular, the contribution of the 5/2+ resonance state of 11 Be to the

breakup cross sections is clearly visible at low energies.

The method can potentially be useful for interpretation and planning of low-

energy Coulomb, as well as nuclear breakup experiments on different targets in

studying the halo nuclei.
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