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In this work the nonrelativistic ionization energies 3He2+µ−e− and 4He2+µ−e− of helium-muonic
atoms are calculated for S states.The estimates are based on the variational principle of exponential
expansion. Convergence of the numerical values of variational energies is studied by increasing a
number of the basis functions N. That allows to claim that the obtained energy values have 30-33
significant digits for S states
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Introduction

Muonic helium ions 3He2+µ−e− and 4He2+µ−e− are simple three-body sys-

tems composed of the negative muon and positive nucleus of 3He or 4He and

the electron. The lifetime of muonic atoms are determined by the lifetime of

muon τµ = 2.19703(4)× 10−6 sec. The three-body bound states has complicated

hyperfine structure which is caused by an interaction of magnetic moments of

the electron, the nucles and the muon. Muon systems represent themselves as a

unique laboratory for precise determination of nuclei properties such as charge

radius [1, 2]. A significant progress in an investigation of energy spectrums of

muonic atoms has been achieved by the CREMA group (Charge Radius Experi-

ment with Muonic Atoms). The Lamb shift and hyperfine structure in muonic
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hydrogen and muonic deuterium have been measured. Similar experiments are

planned for muonic helium. Light muonic atoms are important for testing of

the Standard Model, theory of bound states in quantum electrodynamics and for

searching of exotic particles and interactions.

Hyperfine splitting of the S state in muonic helium atoms 3He2+µ−e− and
4He2+µ−e− was measured many years ago with high enough accuracy. This

measurement is the only experimental result for a three-body muonic atoms. On

the other hand, theoretical investigations of the energy spectrum have achieved

significant successes in two approaches [3-14]. The first approach, used in [3-5],

was based on perturbation theory for the Schrodinger equation. In this case, there

exists an analytic form for a three-body wave function in the initial approach.

On this basis various corrections of hyperfine splitting were made. The other

approach in [6, 11-14] was based on the variational method in quantum mechanics.

It allowed to numerically compute bound energy levels of a three-body systems

with very high accuracy. To find low-lying energy levels with high accuracy one

needs to consider various corrections of an interaction operator of particles. First

of all, these corrections are related to the effect of recoil, nuclear structure and

vacuum polarization. A program for calculating hyperfine structure in muonic

helium, including excited states, was realized in [3-6, 10-12, 15].

In this article we report the results of highly accurate calculations of the

S(L = 0) -states in the helium-muonic 3He2+µ−e− and 4He2+µ−e− atoms. Our

recently improved methods for highly accurate variational computations allow us

to construct extremely accurate variational wave functions for these three-body

helium-muonic atoms. Such wave functions can be used to obtain essentially

exact expectation values of various bound state properties of these systems.

Variational method

The non-relativistic Hamiltonian for ( 3He2+µ−e− or 4He2+µ−e− ) muonic-helium

atom takes the form:

H = − 1
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− 1
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where r1 and r2 are position vectors for two negative particles, r12 = r2 −
r1, µ1 = Mm1/(M + m1) and µ2 = Mm2/(M + m2) are reduced masses, M is

a mass of helium nucleus, and Z = 2 is the nuclear charge. We assume that

m1 = mµ and m2 = 1 , where mµ is a mass negative muon (units are atomic units,

h̄ = 1, me = 1 , and e = 1 ). Where masses of the muon mµ = 206.768262me and

helium nuclei M3He = 5495.8852me and M4He = 7294.2996me must be expressed

in the electron mass me .

In our calculations we use a variational method based on exponentials with

randomly generated parameters. The wave functions:

ψ(r1, r2, r12) = ∑
i

viexp{−αir1 − βir2 − γir12} (2)

with real α , β , and γ chosen randomly and homogeneously between some max-

imal and minimal values. All these values could be determined by minimization
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of the ground-state energy. The convergence of the total energies in atomic units

for the 1sµ1se ground states in the helium-muonic atoms and the convergence

of the expectation values for the delta functions for various pairs of particles are

shown in Tables 1 and 2

Table 1.

The convergence of the total energies in atomic units for the 1sµ1se ground

states in the helium-muonic atoms. N is the total number of basis functions

used in calculations.

N 3He2+µ−e− 4He2+µ−e−

10000 −399.042 336 832 862 534 827 041 568 448 6603 − 402.637 263 035 135 454 018 974 498 601 4674

12000 −399.042 336 832 862 534 827 041 568 448 7145 − 402.637 263 035 135 454 018 974 498 601 4894

14000 −399.042 336 832 862 534 827 041 568 448 7191 − 402.637 263 035 135 454 018 974 498 601 4911

16000 −399.042 336 832 862 534 827 041 568 448 7198 − 402.637 263 035 135 454 018 974 498 601 4914

18000 −399.042 336 832 862 534 827 041 568 448 7192 − 402.637 263 035 135 454 018 974 498 601 4914

20000 −399.042 336 832 862 534 827 041 568 449 8494 − 402.637 263 035 135 454 018 974 498 601 4914

Table 2.

The convergence of the expectation values for the delta functions for various

pairs of particles. N is the total number of basis functions used in calculations.

N 3He2+µ−e− 4He2+µ−e−
〈

δ(rNµ)
〉 〈

δ(rNe)
〉 〈

δ(rµe)
〉 〈

δ(rµe)
〉

10000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

12000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

14000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

16000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

18000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

20000 20 149 938.845 0.320 611 551 58 0.313 682 319 99 0.313 760 536 37

Complex parameters αk, βk , and γk are generated in a quasirandom manner

[16, 17]:

αk = [[1/2k(k + 1)
√

pα](A2 − A1) + A1] + i[[1/2k(k + 1)
√

qα](A′
2 − A′

1) + A′
1]

where [x] designates the fractional part of x, pα and qα are some prime numbers,

and [A1, A2] , and [A′
1, A′

2] are real variational intervals, which need to be

optimized. Parameters αk, βk and γk are obtained in a similar way. More details

may be found in [11].

Computations were performed in the duodecimal arithmetics (about 100

decimal digits). Programs of duodecimal precision were developed by our group

in order to overcome the problem of the numerical instability of calculations at

large values of N . That were developed by one of the authors of the present

paper were used in order to remedy the problem of the numerical instability of

calculations at large values of N . Results of these calculations versus size of the

basis set are presented in Table 1.
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Expectation values of the delta function operators

The results of numerical calculations of the ionization energies for ground state

of a muonic-helium atom ( 3He2+µ−e− and 4He2+µ−e− ) are listed in Table

1. These calculations were carried out using the inverse iteration method [18].

Variational parameters were optimized manually. It should be noted that the

optimum variational parameters for different states differ from each other, and

the calculation accuracy depends to a considerable extent on the choice of the

optimum variational parameters for the given bound state. Bases with N =
10000, 12000, 14000, 16000, 18000 and 20000 functions were used to optimize the

variational parameters. When the states listed in the table were calculated, We

used in our calculations 5-7 "layers" of basis functions.

Hyperfine structure of the 3He2+µ−e− and 4He2+µ−e−

atoms

For S states the spin dependent term of the Breit-Pauli Hamiltonian is

HHFS = −8π

3
µNµµδ(rNµ)−

8π

3
µeµµδ(reµ)−

8π

3
µNµeδ(rNe) (3)

For 4He since the spin of nucleus is zero the Hamiltonian is simplified:

HHFS = −8π

3
µeµµ〈δ(reµ)〉 = E1(se, sµ) (4)

where E1 = −4464.55(60)MHz

For 3He the effective HFS Hamiltonian has three terms:

HHFS = E1(se, sµ) + E2(sh, sµ) + E3(sh, se), (5)

where

E1 = −4463.44(24)MHz , E2 = −331846.(16)GHz , E3 = −1091.750(58)MHz.

The coupling scheme is F = sh + sµ, J = F + se , and the spin state is denoted

as |FJ〉 . Diagonalization of the effective HFS Hamiltonian gives the splitting:

△ν(χ|0,1/2〉) = 248884463.3MHz,

△ν(χ|1,1/2〉) = −82962876.6MHz, △ν(χ|1,3/2〉) = −82958710.2MHz

and for the difference of the lower state (|F = 1〉) :

δν(χ|1,3/2−1/2〉) = 4166.39(58)MHz.
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Conclusion

Variational wave functions of bound states were obtained by solving the Schrodinger

equation for the quantum three-body problem with Coulomb interaction using

a variational approach based on exponential expansion with the parameters of

exponents being chosen in a pseudorandom way. The results of calculations of

the nonrelativistic energy levels for a helium atom were presented. The numerical

calculation results are listed in Table 1. The results of these studies demonstrated

that the energy values are as accurate as 30-33 significant digits. This accuracy

allows one to obtain reliable theoretical predictions.
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