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Based on the magnetic symmetry structure of non-Abelian gauge theories, a dual QCD gauge theory has been con-
structed which takes into account the local structure as well as the topological features of the color gauge group into its
dynamics in a completely dual-symmetric way. Using such dual version of QCD in thermal domain following the parti-
tion function approach and the grand canonical ensemble formulation, the phase transition from hadron to QGP phase has
been investigated within the framework of temperature dependent hadronic bag in the entire T − µ plane. The various
thermodynamic properties like pressure, energy density, speed of sound and specific heat of the hadron/QGP phase have
been evaluated and shown to lead an evidence for the first order phase transition. In the region around Tc < T < 4Tc , the
specific heat and speed of sound are strongly influenced by the magnetically charged particles directly related to thermal
monopoles evaporating from the magnetic condensate present at low temperature.
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Introduction

Soon after the discovery of Quantum Chromodynamics (QCD) [1, 2, 3] and
following the realization that QCD exhibits asymptotic freedom [4] it was rec-
ognized that normal hadronic matter undergoes a phase transition, where the
individual hadrons dissolve into their constituents and produce a collective form
of matter known as the Quark-Gluon Plasma (QGP) [5] under extreme conditions
of high temperature and low chemical potential ( µB ). The precise determination
of the phase boundary between QGP and hadron gas (HG) at high T and bario-
chemical potential ( µB ) has been a subject of intense research in recent years
from experimental as well as theoretical point of view. In this connection, during
past few years, the possibility of creating such high temperature QGP and study-
ing QGP phase of matter by colliding heavy ions in the laboratory has been the
main goal of experiments at Nuclotron-based ion collider facility (NICA) [6, 7] at
Dubna, the Relativistic Heavy-Ion Collider (RHIC) [8, 9] at BNL and the Large
Hadron Collider (LHC) [10, 11, 12] at CERN and needs some reliable theoretical
explanation of various signals which depend on the pressure, entropy, transition
temperature and the equation of state. Unfortunately, the theoretical description
of the QGP from first principle is extremely difficult as the interaction between
quarks and gluons as described by QCD, is strong, therefore, perturbative QCD
is not applicable. Being in the non-perturbative domain, the lattice QCD [13, 14,
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15, 16, 17] and the effective models remain the only tools to study the phase tran-
sition. The lattice-QCD simulation is, however, of limited practical use at finite
baryon density due to the well known fermion sign problem. Therefore, the crit-
ical behavior of such matter with finite baryon chemical potential needs to be
studied in the framework of QCD motivated phenomenological models such as
MIT bag model [18] which provides a semi phenomenological description of an
EOS that features a quark-hadron transition.

The present paper mainly deals with the investigation of thermodynamic
properties of QGP using an infrared effective dual QCD formulation based on
magnetic symmetry. In section "Dual QCD formalism with magnetic symmetry",
the dual QCD formulation has been presented and analyzed to explain the con-
fining behavior of QCD vacuum in its non-perturbative sector. In section "QGP-
phase transition dynamics and thermal hadronic bags", the QGP-phase transfor-
mation dynamics with a thermal version of hadronic bags has been studied in
order to investigate the thermodynamics quantities like the pressure, the energy
density, the specific heat and the square of speed of sound in QGP phase. Calcula-
tion of critical parameters involves the use of Gibbs’s criteria of thermodynamic
equilibrium. The results and their implications have been discussed in section
"Evaluation of thermodynamic and transport properties of QGP".

Dual QCD formalism with magnetic symmetry

Based on the magnetic symmetry structure of non-Abelian gauge groups, a
dual gauge formulation [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
which produce the magnetic condensation dynamically for its vacuum and pro-
vides a gauge invariant investigation and topological ground of confinement,
the resulting dual QCD has been a subject of utmost importance to analyze the
Quark-gluon plasma phase of the hadronic matter. It is based on introducing
the magnetic symmetry as an internal isometry H admitting some additional
Killing vector fields which are internal such that H is a Cartan’s subgroup of a
gauge group G and commutes with it [20, 29]. It, in turn, restricts the associated
gauge potential which may be expressed in the following form,

Dµm̂ = 0, i.e.(δµ + gWµ×)m̂ = 0, (1)

where Wµ is the gauge potential of the gauge group G . It leads to the following

form given as Wµ = Aµm̂ − g−1(m̂ × δµm̂) , where, Aµ ≡ m̂ · Wµ is the Abelian
component and m̂ may then be viewed to define the homotopy class of the map-
ping Π2(S

2) as, m̂ : S2
R → S2 = SU(2)/U(1) , where, S2

R is the two dimensional
sphere of the three dimensional space and S2 is the group coset space completely

fixed by m̂ . Using the dual magnetic potential B
(d)
µ for the magnetic part in or-

der to remove the problem of singular behavior of the potential associated with
monopoles, the dual QCD Lagrangian is constructed in the following form [29].
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[
δµ + i

4π

g
(A

(d)
µ + Bµ)

]
ϕ

2

− V(ϕ), (2)

where V(ϕ) is the effective potential responsible for the dynamical breaking of
magnetic symmetry and has its quadratic form reliable in the phase transition
study of dual QCD vacuum as given by,

Vpt(ϕ) = 3λα
−2
s (ϕ

∗
ϕ − ϕ

2
0)

2, (3)

Using the cylindrical symmetry the field equations associated with the La-
grangian (2) in the quenched approximation may be derived in the following
form [29],

1

ρ

d

dρ

(
ρ

dχ

dρ

)
−

[(
n

ρ
+ (4πα

−1
s )1/2B(ρ)

)2

+ 6λα
−2
s

(
χ

2
− ϕ

2
0

)]
χ(ρ) = 0, (4)

Table 1.
The masses of vector and scalar glueballs as a functions of αs .

αS γ φ0(GeV) mB(GeV) mφ(GeV) λ
(d)
QCD( f m) ξ

(d)
QCD( f m) k

(d)
QCD

0.12 8.30 0.143 2.11 4.20 0.09 0.05 1.8
0.22 7.89 0.149 1.51 2.22 0.13 0.09 1.4
0.47 6.28 0.167 1.21 1.22 0.16 0.16 1
0.96 5.40 0.181 0.929 0.655 0.215 0.31 0.7

d

dρ

[
ρ
−1 d

dρ
(ρB(ρ))

]
− (16πα

−1
s )1/2

(
n

ρ
+ (4πα

−1
s )1/2B(ρ)

)
χ

2(ρ) = 0, (5)

Imposing the asymptotic boundary conditions appropriate for the large-scale be-

havior of QCD B(ρ)
ρ→∞

→ −
ng

4πρ
and ϕ

ρ→∞

→ ϕ0 leads to the asymptotic solution

for B(ρ) as B(ρ) = −
ng

4πρ
[1 + F(ρ)] , where the function F(ρ) , in asymptotic

limit may then be obtained in the following form,

F(ρ)
ρ→∞

→ C
√

ρexp(−mBρ), (6)

Utilizing the asymptotic solutions of the associated dual QCD fields [29, 30],
the energy per unit length of the resulting flux tube configuration may be given
as,

k = 2π

∫
∞

0
ρdρ{

n2g2

32π2ρ2

(
dF

dρ

)2

+
n2

ρ2
F2(ρ)χ2(ρ) +

(
dχ

dρ

)2

+

+
48π2

g4
λ(ϕ

∗
ϕ − ϕ

2
0)

2
} = γϕ

2
0, (7)

The associated vector and scalar glueball masses generated after the dynam-

ical breaking of magnetic symmetry may be evaluated using relations,
mϕ

mB
=

√

3(2παs)−1/2 and α, = 1
2πk = 1

2πγϕ2
0

associated with the string tension and
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the Regge slope parameter. The numerical results of the glueball masses, char-
acteristic length scales and Ginzburg-Landau (GL) parameter [20] are shown in

table 1. The estimate for the GL parameter ( κ
(d)
QCD demonstrate different super-

conducting behavior (type-I, II) of the QCD vacuum intimately connected to the
process of quark confinement in the low energy sector. It is therefore, strongly
desired to construct a low energy effective theory of QCD which might explain
the correct confining features of QCD on one hand and complete phase transition
behavior on the other hand, in an effective way.

QGP-phase transition dynamics and thermal hadronic bags

Phase transitions are associated with the evolution of thermodynamic quan-
tities such as pressure, energy density and entropy density, as well as a set of
response functions, like, specific heat and speed of sound. In order to study the
phase transition dynamics, let us begin with a relativistic quantum system where
particles can be efficiently created and destroyed. Using the grand canonical en-
semble formalism the corresponding partition function is given in the following
form,

Z = Tr

[
exp

(
−

1

T
(Ĥ − µN̂)

)]
, (8)

where, β = 1/T and Ĥ and N̂ is the Hamiltonian and the particle number
operator respectively. The pressure P and the energy density ǫ for a spatial ho-
mogeneous system are given by the first derivatives of ln Z as,

P = T

(
δlnZ

δV

)

T

, ǫ =

(
T2

V

)(
δlnZ

δT

)

V

, (9)

Furthermore, other observables of phenomenological interest derivable from
the basic thermodynamic quantities P and ǫ are the normalized specific heat
and square of speed of sound expressed in the following form,

CV

T3
= 4

ǫ(T)

T4
+ T

[
δ(ǫ/T4)

δT

]

V

, c2
s =

dP

dǫ
= ǫ

d(P/ǫ)

dǫ
+

P

ǫ
, (10)

In order to calculate the various thermodynamic quantities let us start with
the resulting expression for bosonic partition function written as [32],

lnZb(T, µ) =
gbV

2π2

∫
∞

0
dkk2ln

[
1 − exp(−β

√
k2 + m2

b)

]
, (11)

while that for fermions is [32],

lnZ f (T, µ) =
g f V

2π2

∫
∞

0
dkk2

{ln
[
1 + exp(−β(

√
k2 + m2

f − µ))
]
+

+ln
[
1 + exp(−β(

√
k2 + m2

f + µ))
]
}, (12)

gb and g f are the degeneracy factors for bosons and fermions, respectively, and
mb and m f denote the masses of the particles. Hence, using the above expression
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(12) with the degeneracy factor g f = 2× 2 for nucleons, the pressure and energy
density for the hadronic matter is expressed in the following form,

Ph =
7

180
π

2T4 +
1

6
µ

2
qT2 +

1

12π2
µ

4
q, ǫh =

7

60
π

2T4 +
1

2
µ

2
qT2 +

1

4π2
µ

4
q, (13)

Having a description of the hadronic phase at hand, it is straightforward to
analyze the thermodynamic properties of the quark-gluon plasma and to study
the dynamics of hadron to quark-gluon phase transition. Possibly, the simplest
model to describe an approximate physics describing the matter where quark
and gluons are the proper degrees of freedom of the system is the MIT bag model
[18]. The non-trivial feature of the bag model EOS is that the vacuum pressure
generates positive and large contribution to the bag energy density as given by,

Eh = BV +
C

Rh
, (14)

where, B represents the bag constant which gives the bag pressure. Hence, the
grand canonical partition function for the QGP phase consisting of a perturba-
tively interacting gas of quarks and gluons can be written in the following form,

lnZQGP = lnZ0
QGP + lnZVac

QGP, (15)

where, in the r.h.s the first term is the contribution at free level while the second
term represents the non-perturbative vacuum contribution in the form of a T-
dependent bag constant B(T) which may be identified by the confining part of
the energy expression recalculated after taking the multi-flux tube system as a
periodic system on a S2 -sphere [30, 32] and is given by,

B1/4(T) =

(
12

π2

)1/4 m
(T)
B

8
, (16)

where m
(T)
B B is the thermal vector glueball mass derived using path-integral

formalism alongwith the mean-field approach [31] and is given by the follow-
ing expression,

m
(T)
B =

[
m

(0)2
B − (8π

2 + 2παs)
T2

3

]1/2

, (17)

where m
(0)
B is the non-thermal contribution to the vector glueball mass. With

these considerations, resulting expressions for the energy density and pressure
for QGP phase is then given as,

ǫp =
2

3
π

2T4 + 2µ
2
qT2 +

µ4
q

π2
+ B(T), Pp =

2

9
π

2T4 +
2

3
T2

µ
2
q +

µ4
q

3π2
− B(T), (18)

The thermodynamical phase stability then requires the equality of pres- sure,
chemical potential at the boundary of two phases i.e., Ph = Pp = Pc , µ = 3µq =
µc at the transition point Tp = Th = Tc . Since at the critical temperature the ad-
ditional degrees of freedom carried by the quark-gluon plasma, are to be released
which results in an increase in the thermodynamic quantities and is investigated
in the next section.
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Evaluation of thermodynamic and transport properties of QGP

The critical parameters of QGP phase transition within the framework of ther-
mal bag may be evaluated using above mentioned phase equilibrium criteria due
to Gibbs which may be used with the 3-d pressure as depicted in Figure 1(a) for
different coupling values in infrared sector of QCD. The change of the quark-
chemical potential from zero to non-zero values defines uniquely and precisely
the QGP phase transition temperatures and their values are found to decrease
with increasing values of chemical potential. At low values of µ and T the
nuclear matter is composed of confined hadrons, but with increasing T or µ ,
the hadronic matter undergoes a phase transition towards a plasma of decon-
fined quarks and gluons. At vanishing chemical potential ( µq = 0) the transition
temperature of 0.187 GeV , 0.140 GeV , 0.116 GeV and 0.090 GeV for the case of
couplings αs = 0.12; 0.22; 0.47 and 0.96 are obtained respectively.

In Figure 1(b), the variation of energy density for hadron and QGP phase has
been depicted and it has been observed that the energy density increases abruptly
at the phase transition temperature followed by a finite jump discontinuity indi-
cating the rapid rise in the degree of freedom carried by quarks and gluons. The
size of the discontinuity in the energy density, the so-called latent heat ( ∆ǫ ) is
given by,

∆ǫ = ǫp(Tc)− ǫh(Tc) =
33π2T4

c

60
+

3

2
µ

2
qT2

c +
3

4π2
µ

4
q + B(T), (19)

Figure 1. The variation of normalized pressure and energy density for plasma and hadron phase in T − µ plane using
thermal bag for αs = 0.12; 0.22; 0.47 and 0.96 coupling, respectively.

The value of ∆ǫ/T4
c at the transition temperature ( Tc ) is found to increase

with the increase in chemical potential due to the decrease in the transition tem-
perature Tc . For vanishing chemical potential the numerical value of ∆ǫ comes
out to be 1.17 GeV/fm 3 , 0.38 GeV/fm 3 , 0.17 GeV/fm 3 and 0.06 GeV/fm 3 for
different coupling αs = 0.12, 0.22, 0.47 and 0.96 respectively.
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Another important thermodynamic quantity characterizing the equation of
state for a system undergoing phase transition is the specific heat which is a mea-
sure of energy uctuations in the system and these uctuations tend to rise sharply
near a phase transition as shown in Figure 2. The thermal evolution of normal-
ized specific heat shows a small upward cusp at Tc and above the critical temper-
ature specific heat rises with the temperature due to emergent chromomagnetic
monopoles. In this scenario, magnetically charged particles are important com-
ponent above the phase transition, possibly contributing to the physical prop-
erties of the strongly interacting QGP [34, 35, 36, 37, 38]. These component of
the deconfined plasma are, in turn, directly related to thermal monopoles evap-
orating from the magnetic condensate present at low temperature. Furthermore,
another observable of phenomenological interest is the square of speed of sound
in the hot medium related to the speed of small perturbations produced in the
QCD matter. The thermal evolution of the square of speed of sound with tem-
perature and chemical potential has been depicted in Figure 3 and a first order
phase transition is indicated as a result of a sudden drop of c

2
s around transi-

tion temperature alongwith a further rise with temperature approaching to the
value c

2
s = 0.33 near Tc . In the region around Tc < T < 4Tc , c

2
s decreases with

temperature and in this scenario, the near Tc QCD matter is considered as a semi-
quark-gluon-monopole plasma (sQGMP) [39] that contains not only electrically
charged quasi-particles, quark and gluons, but also magnetically charged quasi
particles, monopoles. In conclusion, this scenario emphasizes the change in chro-
modegrees of freedom, and recasts the QCD phase diagram into electrically and
magnetically dominated regimes.

Figure 2. The variation of normalized specific heat for QGP phase in T − µ plane using thermal bag for αs = 0.12, 0.22,
0.47 and 0.96 coupling respectively.
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Figure 3. The variation of speed of sound for QGP phase in T − µ plane using thermal bag for αs = 0:12, 0:22, 0:47 and
0:96 coupling respectively.

Conclusion

Based on the magnetic symmetry structure of non-Abelian gauge theories, a
dual QCD gauge theory has been constructed which takes into account the local
structure as well as the topological features of the color gauge group into its dy-
namics in a completely dual-symmetric way. Using such dual version of QCD in
thermal domain following the partition function approach and the grand canon-
ical ensemble formulation, the phase transition from hadron to QGP phase has
been investigated within the framework of temperature dependent hadronic bag
in the entire T − µ plane. The various thermodynamic properties like pressure,
energy density, speed of sound and specific heat of the hadron/QGP phase have
been evaluated and shown to lead an evidence for the first order phase transi-
tion. In the region around Tc < T < 4Tc , the specific heat and speed of sound
are strongly influenced by the magnetically charged particles directly related to
thermal monopoles evaporating from the magnetic condensate present at low
temperature.
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