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In the present work the phase transition and its dependence on target excitation has been studied in two dimensional
( η − φ ) self affine space using the experimental data of pions obtained from π− -AgBr interactions at 350 GeV/c. For
studying target excitation dependence the data for produced pions are divided into three sets depending on the number
of grey particles ( ng ). The different sets corresponds to the different degrees of target excitation. The Levy indices µ

measured from the analysis fulfills the requirement of the levy stable region 0 ≤ µ ≤ 2 . The Levy index µ <1 indicates
that a thermal phase transition may exist in the π− -AgBr interactions at 350 GeV/c. Further the analysis indicates
different degrees of multifractality for different target excitation. Moreover, the value of universal scaling exponent ( ν )
obtained from Ginzburg-Landau (GL) theory indicates that no evidence of second order phase transition has been found
in the interaction.
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Introduction

Quantum chromodynamics predicts that in high energy interactions, a new
matter state–quark-gluon plasma (QGP)– may be formed. The newly produced
hot system subsequently cools and undergoes a phase transition from the decon-
fined QGP to confined hadrons [1, 2]. The hadrons produced in such processes
are expected to remember a part of the history of these interactions and are be-
lieved to be most informative about the collision dynamics, hadronization mech-
anism and may, in principle, carry some relic information about their parent state.
The investigation of the multiparticle production process may be interesting and
useful for probing the formation of QGP. Since the existence of the phase tran-
sition is associated with properties of the nontrivial quantum chromodynamics,
the study of quark-hadron phase transition has been a hot point in both particle
physics and nuclear physics for more than a decade.

Among the various methods the Levy stable law [3, 4] helps to provide
a useful diagnostic tool to detect the existence of possible phase transition in
hadronization process. This law is characterized by the Levy stability index
µ .This parameter µ , characterizing the width of probability distribution in the
elementary partition of random cascade, takes value in the range [0,2] according
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to the requirement of Levy stability [3, 4]. Within the region of stability 0≤ µ ≤ 2,
µ has a continuous spectrum. The index µ allows the estimation of the cascad-
ing rate [4]. The two bound axes of the Levy index correspond to the degree of
fluctuation in the particle production. µ =2 corresponds to the minimum fluctu-
ation from self-similar branching processes. µ = 0 corresponds to the maximum
fluctuation that characterizes the interacting system as monofractal [5, 6]. But
phase transition cannot be indicated by monofractal behavior alone. According
to [4], when µ <1, there is a thermal phase transition (interspersed in the cascad-
ing process if µ >0). On the other hand, when µ >1, there is a non-thermal phase
transition during the cascading process.

The above discussion about Levy-stability index is for self-similar random
cascading process when the Scaled Factorial Moments (SFM) are calculated in
the self-similar way, i.e. shrinking the higher dimensional phase space isotropic
ally. However, phase space in high-energy multiparticle production is anisotropic
as indicated by Van Hove [7]. The fluctuation pattern is also expected to be
anisotropic and the scaling behavior should also be different in different direc-
tions giving rise to self-affine scaling. In self-affine scenario when the SFMs are
calculated, the phase space should be shrunk according to the inherent self-affine
parameter – Hurst exponent H. The Levy index µ obtained only in this way is
meaningful to characterizing the self-affine random cascading process. A very
few Levy index analysis in self-affine space have been reported so far [8, 9].

Ginzburg-Landau (GL) formalism [6, 10-12] helps to investigate the exis-
tence of second order phase transitions in hadronization process. According to
Ginzburg-Landau theory for second order phase transitions, the anomalous frac-
tal dimension (d q ) follows the relation

dq

d2
= (q − 1)ν−1, (1)

where scaling exponent ν =1.304 [6, 10-12], a universal quantity that is valid for
all systems describable by the GL theory and independent of the underlying di-
mension or parameters of the model. If the measured value of ν is significantly
different from the critical value, then obviously the GL description is inappro-
priate and second order phase transition can most likely be ruled out. On the
other hand, if it is close, then one can expect a second order quark-hadron phase
transition.

The universality of ν characterizes quark-hadron phase transitions and can be
tested directly by appropriately analyzed data. If a signature of a quark-hadron
phase transition depends on the details of the hadron-nucleus collisions, even af-
ter they have passed the thresholds for the creation of quark-gluon plasma, such
a signature is likely to be sensitive to the theoretical model used. Here, ν is inde-
pendent of such details and depends only on the validity of the GL description
of the phase transition for the present problem.

Pions (shower particles) are believed to be most informative in finding the
proper dynamics of the multiparticle production process. But the medium energy
(30-400) MeV knocked out protons, which manifest themselves as grey particles
in nuclear emulsion, may also play an important role in this regard. It is generally
believed that grey particles are supposed to carry relevant information about the
hadronization mechanism, since the time scale of emission of these particles is of
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the same order as that of the produced shower particles and hence are expected
to remember a part of the history of these reactions. These target protons are the
low energy part of intra-nuclear cascade formed in high-energy interactions.

It is interesting to note that the number of grey particles, ng , could serve as
a measure for the number of collisions in nuclei and, only for qualitative dis-
cussion, the mean number of collisions ύ is likely to be a monotonically rising
function of ng eventually saturating at high ng . In a more general sense, ng

together with the number of pions can be interpreted as a measure of violence
of the target fragmentation. It would be no doubt interesting to discuss the be-
haviour of pions as a function of ng , which is taken as a number of collisions
or, more generally, as a measure of the violence of target fragmentation [13, 14].
To get more information about the inner dynamics of the particle production in
high-energy interactions, the phase transition and its dependence on target exci-
tation has to be studied thoroughly using the available tools. To do this, we have
divided the data for produced pions for ( π− - AgBr) interactions at 350 GeV into
three sets depending upon the number of grey tracks ( ng ). The different data sets
correspond to different degrees of target excitation.

The aim of the present paper is to perform Levy stability analysis of the pro-
duced pions in two dimensional ( η - φ ) phase space under self-affine scenario
imposing special emphasis on phase transition study. Levy stable law has been
used to determine the value of µ for different target excitations (different val-
ues of ng ) in ( π− - AgBr) interactions at 350 GeV/c to asses the dependence of
the quark-hadron phase transition on target excitation. Finally using the GL the-
ory we have determined the value of ν for the same interaction to search for the
second order quark-hadron phase transition.

Experimental details

We study the hadron-nucleus interaction data of π− AgBr at 350 GeV/c . A
stack of G5 nuclear emulsion plate was exposed horizontally to a π− - AgBr
beam at CERN with 350 GeV/c .

The nuclear emulsion covers 4π geometry and provides very good accuracy,
even less than 0.1 mrad, in angle measurements due to high spatial resolution
and thus is suitable as a detector for the study of fluctuations in fine resolution
intervals of the phase space. The emulsion plates were area scanned with a Leitz
Metalloplan Microscope fitted with a semiautomatic scanning device, having a
resolution along the X and Y axes of 1 µm while that along the Z axis is 0.5 µm .
A sample of 569 events of ( π− - AgBr) at 350 GeV/c was chosen, following the
usual emulsion methodology for selection criteria of the events.

The events were chosen according to the following criteria:
i) The incident beam track should not exceed 3o from the main beam direction

in the pellicle. This is done to ensure that we have taken the real projectile beam.
ii) Events showing interactions within 20 µm from the top and bottom surface

of the pellicle were rejected. This is done to reduce the loss of tracks as well as to
reduce the error in angle measurement.

iii) The incident particle tracks, which induced interactions, were followed in
the backward direction to ensure that they indeed were projectile beam starting
from the beginning of the pellicle.
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The emission angle ( θ ) and azimuthal angle ( φ ) are measured for each tracks
by taking readings of the coordinates of the interaction point ( x0, y0, z0 ), coor-
dinates ( xi, yi, zi ) at any point on the linear portion each secondary track and
coordinate ( x1, y1, z1 ) of a point on the incident beam.

According to nuclear emulsion terminology [15], the particles emitted in high-
energy interactions are classified as:

• Black particles: They are target fragments with ionization greater than or
equal to 10I0 , I 0 being the minimum ionization of a singly charged particle.
Their ranges are less than 3 mm. Their velocity is less than 0.3 c and their
energy is less than 30 MeV , where c is the velocity of light in free space.

• Grey particles: They are mainly fast target recoil protons with energy up to
400 MeV . The ionization power of gray particles lies between 1.4 I0 to 10I0.
Their ranges are greater than 3 mm and they have velocities between 0.3 c
to 0.7 c.

• Shower particles: They are mainly pions with ionization ≤ 1.4I0. These
particles are generally not confined within the emulsion pellicle.

Methodology

The method of scaled factorial moment is used here to analyse the intermittent
type of fluctuations of emitted particles in two-dimensional phase space. Denot-
ing the two-phase space variables as x1 and x2 , factorial moment of order q may
be defined as [16]

Fq(δx1, δx2) =
1

M

M

∑
m

= 1
〈nm(nm − 1).......(nm − q + 1)〉

〈nm〉
q , (2)

where δx1 and δx2 is the size of a two-dimensional cell. The brackets 〈 〉 denote
the average over the whole ensemble of events. nm is the multiplicity in the mth
cell. M is the number of two-dimensional cells into which the considered phase
space has been divided.

One has to connect δx1 , δx2 and M. As the starting point to solve this problem
let us fix a two-dimensional region ∆x1 ∆x2 and divide it in to sub cells of width
δx1 = ∆x1 / M1 and δx2 = ∆x2 / M2 . Here M1 is the number of bins along x1 di-
rection and M2 is the number of bins along x2 direction. Cell size dependence of
factorial moment is studied by shrinking the bin widths in both directions. There
are two ways of doing it. Widths may be shrinked equally ( M1 = M2 ) or un-
equally ( M1 6= M2 ) in the two dimensions. The shrinking ratios along x1 and x2

directions are characterised by a parameter H = lnM1/lnM2 where 0 < H ≤ 1
is called the roughness or Hurst exponent [17, 18]. If and only if the shrinking ra-
tios along the two directions satisfy the above relation with a particular H value,
the function Fq ( δx1 , δx2 ) will have a well defined scaling property. H=1 signifies
that the phase space is divided isotropically and consequently fluctuations are
self-similar. When H<1 it is clearly understood that the phase spaces along x1

and x2 directions are divided anisotropically consequently the fluctuations are
self affine in nature.
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As noted, the intermittent behavior of the multiplicity distribution manifests
itself as a power law dependence of factorial moment on the cell size as cell size
approaches zero,

〈

Fq

〉

∝ Mαq . (3)

The index αq is obtained from a linear fit of the form

ln
〈

Fq

〉

= αqlnM + a, (4)

where a is a constant.
According to the predictions of a simple scale – invariant cascade model [3],

the higher order scale factorial moments are related to the second order scaled
factorial moments by a modified power law

Fq ∝ F
βq

2 . (5)

which may provide some vital information about the underlying dynamics. It has
been found that the slopes of the power law between higher order and second
order SFM s are independent of phase space size and phase dimension [6, 10].
In other words the values of βq summarize the scale invariance property on the
global scale.

Now we can define the quantity βq in terms of the ratio of higher order inter-
mittency exponent to the second order intermittency exponent (or in terms of the
ratio of higher order anomalous fractal dimension to the second order anomalous
fractal dimension) by the following relation

βq =
αq

α2
=

dq

d2
(q − 1), (6)

βq is related to Levy index ( µ ) by the equation

βq =
αq

α2
=

qµ − q

2µ − 2
. (7)

Here, µ , known as Levy index, is considered a measure of degree of multifrac-
tality [6]. Within the region of stability 0 ≤ µ ≤ 2 , µ has a continuous spectrum.

Note that if µ =2, the Levy distribution will be transformed into Gaussian one.
Under this condition one expects minimum fluctuation in the self-similar branch-
ing process. On the other hand, for µ = 0 , dq = d2 i.e. dq does not depend on
q , corresponds to monofractality and maximum fluctuation and might, therefore
be a signal of QGP second order phase transition. When µ > 0 , dq 6= d2 i.e. dq

depends on q , the condition for multifractality is satisfied.
According to GL theory for second order phase transition the anomalous frac-

tal dimension follows the relation

dq

d2
= (q − 1)µ−1. (8)

Or in terms of β q the scaling behavior is represented by the following relation

βq = (q − 1)µ, (9)

with ν = 1.304 as the critical exponent.
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Results and Discussion

In order to reduce the effect of non-flat average distribution, the cumulative
variables Xη and Xφ are used instead of η and φ [19, 20]. The corresponding
region of investigation then becomes (0-1). The new “cumulative” variable Xz is
related to the original single-particle density distribution ρ(z) as,

Xz =
∫ z

zmin

ρ(z′)δz′/
∫ zmax

zmin

ρ(z′)δz′, (10)

where zmin and zmax are the two extreme points of the distribution. In the Xη −

Xφ space we divided the region [0, 1] into Mη and Mφ bins respectively. The

partitioning was taken as Mη = MH
φ . We choose the partition number along

φ direction as Mφ =2, 3, . . . . . . , 20. The ( Xη − Xφ ) space is divided into M =
Mη × Mφ cells and calculation is done in each bin independently.

To analyze the anisotropic nature of pions in the ( Xη − Xφ ) phase space facto-
rial moment of different orders for different Hurst exponents starting from 0.3 to
0.7 in steps of 0.1 and for H = 1 are calculated. We have studied the variation of
average factorial moment

〈

Fq

〉

against the number of the two dimensional cells
M in a log-log plot for different orders (q=2, 3, 4 and 5) and for the considered H
values. In order to find the partitioning condition at which the scaling behavior
is best revealed, we have performed the linear best fits. From the linear best fits
intermittency exponents ( αq ) are extracted. χ2/d.o. f . values are calculated for
each linear fits. We have also estimated the confidence level of fittings from the
χ2 values. The minimum value of χ2 per degree of freedom indicates the best
linear behavior. For pions the best linear fit occurs at H=0.3 which shows that
the anisotropic behavior is best revealed at H=0.3. The values of χ2 per degree
of freedom and the confidence level of fittings are tabulated in Table 1 for H=0.3.
From the table it is seen that for H=0.3 the confidence level of fittings are very
good. For this H value the plot of ln

〈

Fq

〉

as a function of lnM is shown in Figure
1(a). To compare the self- affine behaviour with the self similar one the variation
of ln

〈

Fq

〉

against lnM corresponding to H=1 is shown in Figure 1(b) and the cor-

responding results are shown in Table 1. χ2 per degree of freedom values and
confidence level of fittings at H=0.3 are better than the corresponding values ob-
tained at H=1. So the dynamical fluctuation pattern of shower particles in π− -
AgBr interaction at 350 GeV/c is not self-similar but self-affine in nature.

Figure 1. Variation of ln
〈

Fq

〉

as a function of on lnM for full data set at (a): H = 0.3, (b): H = 1.
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Using the values of α q , we have calculated β q using Equation (6). These

values are given in Table 2. The β q versus q graph is shown in Figure 2. It

is observed that the parameter β q increases with increasing order of moments.

This indicates the fact that charged particle density distribution has multifractal
structure. Therefore, we can say that hadrons in the final state are produced as a
result of a self-similar cascade mechanism [3, 16].

Table 1.
Values of intermittency exponent αq , χ2/d.o. f . and confidence level of fittings
at H=0.3 and H=1 for full data set
H q αq χ2/d.o. f . Confidence

level of fittings

2 0.56 ± 0 .01 0.38 98.90 %
0.3 3 1.22 ± 0 .03 0.49 95.93 %

4 1.92 ± 0 .06 0.58 91.30 %
5 2.63 ± 0 .10 0.70 80.95 %

1 2 0.59 ± 0 .01 0.74 76.62 %

Then Levy stability index µ is calculated using Equation (7) and tabulated in
Table 2. Here the Levy index obtained for the ( η−φ ) space is µ =0.468± 0.005,
which is within the permissible limit 0 ≤ µ ≤ 2 . Here µ <1 would have
indicated a thermal phase transition of second order.

Table 2.
Values of different parameters ( βq , µ and ν ) for full data set

H q βq µ ν

2 0.56 ± 1
0.3 3 1.22 ± 2.16 0.468±0.005 1.110±0.002

4 1.92 ± 3.39
5 2.63 ± 4.65

Figure 2. Variation of βq with q for full data set for self-affine H, 1 case.
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On the basis of the Ginzburg – Landau (GL) theory it has been found that the
scaling exponent ν = (1.110 ± 0.002) . This value of ν (considering the errors) is
significantly different from the critical value, 1.304. This makes the GL descrip-
tion inappropriate, and no second order QGP phase transition takes place in the
hadronization process.

For studying target excitation dependence we have divided the data set for
pions into three sets, 0≤ ng ≤ 2 , 3 ≤ ng ≤ 5 , 6 ≤ ng ≤ 13 , depending on the
number of grey tracks ( ng ).The sets correspond to different degrees of target exci-
tation. The division is made in such a way that each set contains reasonably equal
number of events. The self – affine analysis is repeated for the three data sets. The
fluctuation pattern is self-affine in nature in all the three sets of ng . ln

〈

Fq

〉

vs.
lnM graphs for all ng intervals are shown in Figure 3 and corresponding results
are tabulated in Table 3. A low value of H suggests that anisotropy is strong for
0 ≤ ng ≤ 2 and 6 ≤ ng ≤ 13 data sets.

Figure 3. Variation of ln
〈

Fq

〉

as a function of on lnM for self-affine H, 1 case
for different intervals (a): 0 ≤ ng ≤ 2 , (b): 3 ≤ ng ≤ 5 , (c): 6 ≤ ng ≤ 13 .
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Table 3.
Values of intermittency exponent αq , χ2 /d.o.f. and confidence level of fittings
for different ng intervals (for self-affine H, 1 case)

ng H q αq χ2/d.o. f . Confidence
level of fittings

2 0.58 ± 0 .01 0.13 Almost 100 %
0 ≤ ng ≤ 2 0.3 3 1.25 ± 0 .05 0.51 94.89 %

4 1.99 ± 0 .10 0.54 93.67 %
5 2.76 ± 0 .18 0.70 80.67 %
2 0.55 ± 0 .01 0.33 Almost 100 %

3 ≤ ng ≤ 5 0.7 3 1.20 ± 0 .03 0.49 95.82 %
4 1.88 ± 0 .07 0.67 84.04 %
5 2.56 ± 0 .13 0.77 72.95 %
2 0.61 ± 0 .02 0.24 Almost 100 %

6 ≤ ng ≤ 13 0.3 3 1.32 ± 0 .04 0.56 92.07 %
4 2.07 ± 0 .07 0.57 91.55 %
5 2.80 ± 0 .10 0.59 90.61 %

In the self-affine space the Levy index analysis is performed for the three tar-
get excitation data sets. The βq versus q graphs for the three data sets are shown
in Figure 4. It is observed that the parameter βq increases with increasing or-
der of moments revealing multifractal pattern of produced pions in different ng

intervals. The errors shown in the figures are standard errors. The values of µ

are calculated following the same procedure as in the previous cases and listed in
Table 4. We get µ <1 for three target excitation data sets indicating a second order
thermal phase transition (interspersed in the cascading process) with a largelatent
heat, and thus may serve as a possible indication of QGP being formed.

Table 4.
Values of different parameters ( βq, µ and ν ) for different ng intervals (for
self-affine H, 1 case)

ng H q βq µ ν

2 1
0 ≤ ng ≤ 2 0.3 3 2.17 0.542±0.002 1.131±0.004

4 3.46
5 4.79

2 1
3 ≤ ng ≤ 5 0.7 3 2.18 0.478±0.002 1.112±0.004

4 3.42
5 4.66

2 1
6 ≤ ng ≤ 13 0.3 3 2.16 0.425±0.012 1.098±0.007

4 3.37
5 4.57

Moreover, the values of Levy indices ( µ ) vary consistently with degrees of
target excitation.
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Figure 4. Variation of βq with q for self-affine H, 1 case for different ng intervals
(a): 0 ≤ ng ≤ 2 , (b): 3 ≤ ng ≤ 5 , (c): 6 ≤ ng ≤ 13 .

Again according to the GL theory the values of ν for three ng intervals are
calculated and are listed in Table 4. From the table it is observed that the values of
ν are significantly different from the critical value of ν making the GL description
inappropriate and second order phase transition can most likely be ruled out.

Conclusions

Quark-hadron phase transition and its dependence on target excitation have
been studied for pions in self-affine η−φ phase space. The following interesting
features are revealed from the present investigation:

1. The parameter βq increases with increasing order of moments q, which in-
dicates that self-similar cascading to be the mechanism responsible for multipar-
ticle production. From our analysis we find that the particle density distribution
possesses multifractal structure and the degree of multifractality is different for
different target excitations.
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2. The values of the Levy stability index µ obtained in our study are consis-
tent with the Levy stable region 0 ≤ µ ≤ 2 .

3. We get µ <1 for full data set and as well as for three target excitation data
sets indicating a second order thermal phase transition and thus may serve as a
possible indication of QGP being formed.

4. The values of Levy indices ( µ ) vary consistently with degrees of target
excitation.

5. From the values of the critical exponent ν in our analysis, no evidence for
the existence of second order phase transition has been found according to the
GL theory.

6. The values of critical exponents ( ν ) vary consistently with degrees of target
excitation.
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